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Abstract

We examine persuasion when the sole source of credibility today is a desire

to maintain a public record for accuracy. A long-run sender plays a cheap talk

game with a sequence of short-run receivers, who observe some record of feed-

back about past accuracy. A geometric approach shows that when all feedback

is public (as standard in repeated games), persuasion frequently requires ineffi-

cient on-path punishment—even if accuracy is monitored perfectly. If instead the

record publishes coarse summary statistics (as is common online), any communi-

cation equilibrium the sender prefers to one-shot cheap talk—including Bayesian

persuasion—can be supported without cost. (JEL C72, C73, D02, D82, D83)

Credible communication often relies on the desire to be believed not only today, but

in the future as well. In many settings, like large anonymous markets, these long-run

incentives depend in turn on the availability of public records. By publishing feedback

about the quality of past communication, records make it possible to punish unsatis-

factory advice with future incredulity. Yet such an endogenous source of commitment

comes at a cost, as surplus-burning punishments must now occur whenever an inac-

curacy is published. This creates a trade-off new to persuasion: today’s approach to
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persuasion must be balanced against its likely effect on future credibility. Clearly, the

process for publishing feedback must determine this trade-off. Hence, to analyze com-

munication in these settings, we must understand the interaction between the individual

persuasion problem and the design of the public record system itself.

With the rapid growth of online markets, managing these trade-offs is becoming

ever more important. The approach of platforms such as eBay, Airbnb, and Upwork

is to provide coarse public records. In particular, each promises its vendors a ‘badge’

if customer feedback meets the platform’s standards. Yet, customers are not allowed

to view all relevant feedback.1 We might worry that such systems weaken long-run

incentives by hiding instances of feedback that could be used to punish participants.

Perhaps surprisingly, the opposite is true: we show when platforms selectively pool

feedback, myopic customers can be persuaded to incentivize suppliers more efficiently.

Indeed, treating the choice of record as an information design problem, we show simple

badge systems can support credible communication with almost no on-path punishment.

To explore the performance of public records as a source of commitment, we develop

a model of long-run persuasion. A patient long-run sender (‘he’) plays a cheap talk game

with a sequence of short-run receivers (each ‘she’). Each period a payoff-relevant state

is independently drawn. The sender observes the state and sends a message to the

receiver, who chooses an action. After she acts, a signal of the state (e.g., feedback)

is realized. We say monitoring is perfect when the signal is noiseless, and imperfect

otherwise. Repeated play of the game generates a history of messages, actions, and

signals, which the sender always observes. Receivers may observe less: we say the public

record is ‘complete’ if they observe the full history (standard in repeated games), and

‘incomplete’ otherwise. Our focus on short-run receivers means the sender can influence

actions only via beliefs, allowing comparison with communication benchmarks like full

information and Bayesian persuasion (Kamenica and Gentzkow (2011); KG, hereafter).

In section 2, we begin with an analysis of complete public records. Taking a belief-

based approach, we apply the logic of Fudenberg et al. (1990) to recast the sender’s

problem in terms of costly (one-shot) Bayesian persuasion. Theorem 1 shows that

even in the best case of perfect monitoring, long-run incentives often fall short: a

1For example, eBay’s Top Rated badge requires sellers avoid “not as described” cases; these indi-
vidual complaints are not published. Even where some individual reviews are available, they are rarely
used: less than 1% of visitors click to see the details behind a rating (Nosko and Tadelis, 2015).
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patient sender can achieve the Bayesian persuasion benchmark if and only if his optimal

information structure under commitment is partitional (a deterministic mapping from

states to messages, e.g., full information). Furthermore, Theorem 1 characterizes the

limitations of long-run persuasion via the geometry of a partitional value function, Vpart,

which specifies at each prior the sender’s payoff from his optimal partitional information

structure. We show long-run incentives are a robust substitute for commitment (i.e., the

sender’s maximal payoff equals the KG benchmark at every prior) if and only if Vpart is

concave. As a result, the theorem provides a method for identifying the limitations of

long-run persuasion without having to solve the Bayesian persuasion problem directly.

For some intuition, note that deviations from partitional information structures are

easily identified ex post when monitoring is perfect. Hence, they can be enforced via off-

path punishments. By contrast, non-partitional information involves mixing between

different messages in at least one state. Such mixing requires indifference, which in

turn requires (surplus-burning) on-path punishments.2 So if long-run incentives are a

robust substitute for commitment, the KG payoff must be attained with some partitional

information structure for every prior and Vpart must inherit the concavity of the Bayesian

persuasion benchmark. Perhaps less obvious, the converse is also true.

We examine some applied consequences of this geometry for long-run persuasion.

Proposition 3 establishes some bad news when the set of actions is finite: if the sender

can benefit from persuasion, then long-run persuasion almost always fails to attain

the KG payoff. Proposition 4 evaluates the efficacy of certification using fixed (prior-

independent) partitions, such as grading students or rating debt. We provide necessary

and sufficient conditions under which such communication always attains KG payoffs.

Fundamentally, non-partitional communication is costly because credibility requires

a threat of punishment, and mixed strategies cause this punishment to occur on path.

Moreover, when monitoring is imperfect, even partitional information structures involve

on-path punishment, and the equilibrium payoff set contracts (Fudenberg and Levine,

1994). However, in section 3 we present our second main insight: by pooling histories

we can persuade receivers to discipline the sender more efficiently, benefiting sender and

receivers alike. Applying information design to the public record, we show credibility

can be supported with almost no on-path punishment.

2Mathevet et al. (2022) makes the same initial observation. They then take a different approach
from us, studying a reputational-types model in which the sender is committed with some probability.
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To fix ideas, consider an online seller advertising products of differing qualities at

a fixed price. To secure a sale, the seller must persuade a customer that the product’s

expected quality is sufficiently high; if he does, the customer leaves a noisy review of

her purchase (i.e., monitoring is imperfect). Consider for a moment an equilibrium in

which at some time t two types of feedback history may arise: those at which the seller

is incentivized to recommend only high quality products, and those at which he is not.

If the public record is complete, both types of history will involve costs in equilibrium:

the seller expects future punishments in the former, and cannot sell in the latter.

Suppose a designer could pool these feedback histories from the perspective of the

tth customer only. If the seller adopts the same (now private) strategy, this customer

may now be persuaded to follow a ‘buy’ recommendation at both histories (given her

information, she will account for the seller’s expected play across these histories). More-

over, because all feedback is released after t, future customers’ ability to discipline the

the seller’s private strategy at t is not diminished. Hence, the tth customer can be

persuaded to buy more often, but with less on-path punishment. Clearly, the seller is

better off. More surprisingly, we show the customers may be better off too—the re-

duction in punishments can more than compensate for the ex ante cost of occasionally

buying from an uninformative seller.

In section 3.2 we explore the scope for the design of coarse records to improve payoffs.

Theorem 2 shows that under a broad set of conditions, a designer (‘the platform’) can

employ a simple badge system (SBS) to almost costlessly implement any information

structure that the sender prefers to one-shot cheap talk. Hence, the scope for gains can

be large: in our online trade example, it covers all feasible communication. In a SBS, the

platform collects and periodically evaluates receivers’ feedback against a set of chosen

standards. These might, for example, require a seller to keep the rate of complaints

below a threshold. The platform awards the sender with a public badge if and only if

its standards are met. While the sender observes all feedback, incoming receivers can

observe only the badge; even the dates of evaluation are hidden from them.3

To implement a target information structure, the platform uses long evaluations

and chooses standards strict enough that communication ‘far’ from the target loses the

badge with probability close to one, but lenient enough that communication ‘near’ the

3Similar to Kremer et al. (2014) we model this as hiding information about uncertain arrival time
within an evaluation phase. We discuss various foundations for this assumption in section 4.
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target very likely retains it. This design admits an equilibrium which reduces on-path

punishments by disciplining average behavior only, as in Radner (1985). The sender

communicates near the target on average to avoid being punished by receivers for losing

the badge. Consequently, when he has the badge, receivers’ beliefs are determined by

this average alone. However, this necessarily abandons incentivizing some interactions:

if the sender has already done enough to retain the badge, he has no incentive to

communicate on target. Clearly, if a receiver knew she were at such a history she

would not find him credible, and so her strategy would not be a best response. The

SBS solves this problem by pooling histories to persuade receivers to adopt this more

efficient strategy. Indeed, such persuasion is at the heart of any incomplete record

system that improves equilibrium payoffs (relative to the complete record case).4

These results are particularly relevant to the flourishing of online trade.5 As Tadelis

(2016) points out, this success has relied largely on the development of feedback and

reputation systems, which have been carefully refined by platforms since their inception

and now often take the form of badges.6 For instance, eBay periodically assesses its

sellers and awards a Top Rated badge to those who have attracted disputes on no

more than 0.5% of their sales. To avoid disputes, sellers are advised to “describe

(each) item accurately”. Airbnb and Upwork also provide badges that require accurate

communication about availability, among other things. These badges all depend on

hiding historical data from other users, such as the the rate of disputes (eBay) or

individual ratings (Airbnb). Finally, eBay and Upwork provide vendors with portals to

privately track their feedback and manage any risk of losing their badge.

One might worry that in reality platforms could face issues committing to a simple

badge system. In section 4 we discuss this issue in light of an alternative (sender-

blind) review system. In doing so, we also formally identify the theoretical and applied

differences between public record systems and approaches that ‘reuse punishments’, as

in Abreu et al. (1991) and Fuchs (2007). We also extend our analysis to evaluate review

systems that cannot hide evaluation dates or acquire feedback, and those that face other

forms of moral hazard. Finally, we discuss related literature in section 5 and conclude

in section 6. Proofs are contained in the appendices.

4That is, relative to the payoff bounds arising from the logic of Fudenberg and Levine (1994).
5Having grown from 0.5% to 14% of retail sales in the past two decades (US Bureau of the Census).
6Hui et al. (2016) find that eBay’s Top Rated badge both confers significant reputational advantages

to sellers and motivates those in danger of losing the badge to improve their behavior.

5



1 Model

We consider a repeated cheap talk game between a long-run sender (‘he’) with discount

rate δ ă 1 and a sequence of short-run receivers (each ‘she’). At each time t “ 1, 2, . . . ,

the current state of the world θt is drawn randomly from a common prior µ0 over a

finite set Θ; θ is realized with probability µ0,θ. The sender privately observes θt and

sends a message mt P M to the receiver. We allow M to be an uncountable Polish

space endowed with the Borel σ-algebra. However, little is lost if the reader prefers to

treat M as large but finite (see Proposition 1). On observing mt, the receiver chooses

an action at from a compact, metrizable set A. The sender’s and receivers’ respective

stage payoffs are v paq and u pθ, aq, each continuous in a. We assume (i) the sender cares

only about a so his short-term incentive is to say whatever induces his favored action

and (ii) there are no strictly dominated actions—for each a P A there is some belief

about θ under which a is optimal for the receiver.7

At the end of the stage game, a signal ωt is drawn from a finite set Ω Y tHu. For

all but at most one action a1, we assume ωt is drawn from a conditional distribution

ppωt | θtq, where ppH | θtq “ 0. If at “ a1, then the signal is ωt “ H. Given at, pθt, ωtq is

history-independent. a1, interpreted as ‘inaction’, accommodates natural applications

(see example 1). Except for inaction, monitoring therefore takes a product structure

(Fudenberg et al. (1994)). We say monitoring is perfect if ωt identifies θt for every

at P A, and imperfect otherwise.

On entering period t, the sender observes past θt “ pθ1, . . . , θt´1q and the history of

feedback, ht “ pmτ , aτ , ωτ q
t´1
τ“1, with h1 “ H. Denote the sender’s (private) history by

ht “ pθt, htq, and let the corresponding sets of histories at t be Ht and Ht, respectively.

We write H, H for the sets of all such histories. The receiver at t only observes a public

record rt, determined by a sequence of functions, rt : Ht Ñ Rt, t “ 1, 2, . . . , where each

Rt is the set of possible public records at t and R “
Ť8

t“1Rt. Let Rt be the set of

time t sequences rt “ pr1, . . . , rtq. Our analysis compares different types of record: a

complete public record sets Rt “ Ht and rt “ ht for all t.8,9 We call other (non-

invertible) forms of public record incomplete; we discuss them in detail in section 3.

7Both assumptions simplify exposition. Theorems 1 and 2 can be extended to state-dependent v,
and (ii) just removes a set of actions that receivers could never be persuaded to take.

8Since M and therefore each Ht need not be finite, each Rt may also be infinite in principle.
9When clear from context, we may use the same notation for a function and its output (as for rt).
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Throughout, we allow players access to a public randomization device.

The sender’s payoff in the repeated game is
ř8

τ“1 δ
τ´1vpaτ q. To make welfare com-

parisons with static benchmarks, we occasionally discount receivers’ payoffs at the same

rate. Strategies for the sender σ : H ˆ Θ Ñ ∆M , receiver ρ : R ˆ M Ñ ∆A, and belief

systems µ : R ˆ M Ñ ∆Θ are measurable functions, defined on the respective histo-

ries.1011 A profile ⟨σ, ρ, µ⟩ constitutes a perfect Bayesian equilibrium (PBE) if σ is a

best response for the sender at each pht, θtq, ρ a best response for the receiver at each

prt,mtq, and beliefs are derived from Bayes rule where possible (see Appendix A for

formalities).12 A public PBE (PPBE) is a PBE in which the sender’s strategy depends

only on rt and θt. We write Epµ0, δq for the set of (discounted average) PBE payoff

pairs. Throughout the paper, we illustrate our main results with the following example:

Example 1 A long-run seller serves a sequence of anonymous customers. Each period,

he has a product of quality θ P tl ă 0, h “ 1u, where Pr rθ “ hs “ µ0, and makes a claim

m P t‘like new’, ‘used’u. If a customer ‘Refuses’ the product, she and the seller get payoff

0. If she ‘Buys’ she gets θ, while he gets 1. Monitoring may be perfect or imperfect:

if perfect, then θ is revealed ex post; if imperfect, feedback ω P tb, g,Hu is distributed

according to Pr pg | h,Buyq “ Pr pb | l, Buyq “ p ą 1
2
and Pr pH | h,Refuseq “ 1.

Therefore, g, b, and H can be interpreted as good, bad, and no review, respectively.

Benchmarks for Long-Run Persuasion

In any stage game, the sender’s strategy induces an information structure: a distri-

bution λ P ∆∆Θ over the receiver’s posterior beliefs. When the sender can commit to

information structures, KG’s analysis implies it is without loss of generality for average

payoffs to (i) restrict strategies to a choice of information structure from the Bayes

plausible set Λ pµ0q “ tλ : Eλ rµs “ µ0u, with |supp λ| ď |Θ|` 2; and (ii) break receiver

indifference in favor of the sender.13 When discussing commitment benchmarks, we

also adopt these properties. Let λ pµq and λ pµ | θq denote the marginal and conditional

10Since rt is a function of ht, we can write σ as a reduced-form function of pht, θtq only.
11∆X is the space of probability measures on X with the weak* topology, unless stated otherwise.
12Formally we require beliefs are given by an appropriate probability kernel. See Appendix A. As

only induced beliefs about θt matter, we need not explicitly reference beliefs over H.
13Strictly, KG show that |supp λ| ď |Θ| ` 1 is sufficient when characterizing the sender’s payoffs;

when one is also interested in the receiver’s payoff, their arguments imply the bound |supp λ| ď |Θ|`2.
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probabilities that the receiver’s induced posterior is µ.

When the receiver’s posterior is µ, she may have multiple best responses: among

these, apµq denotes the sender’s preferred one and apµq his least-preferred one.14 In

the case of sender-preferred selection, we concisely write his payoff given posterior µ as

v pµq, and v pλq :“ Eλ rv pµqs for its mixed extension. u pµq, u pλq are defined similarly

for receivers, though these obviously do not depend on any particular selection among

her best responses. The commitment set C specifies all the payoff pairs consistent with

some Bayes plausible information structure:

C :“

#

pu, vq : u “ u pλq , v P rEλrvpapµqqs, v pλqs , for some λ P Λ pµ0q

+

.

The Bayesian persuasion payoff is the sender’s maximal payoff among those in C:

Vkgpµ0q :“ max
λPΛpµ0q

vpλq. (KG)

KG show Vkg “ cav v, the concave envelope of the (interim) value function vpµq. We

call any solution to (KG) Bayesian persuasion, denoted λkg P Λkgpµ0q. Of course,

the receiver’s optimum is attained by full information.

Figure 1 illustrates these concepts for example 1. The customer buys if and only if

her posterior is µ ě µ :“ |l|
1`|l|

. Hence, vpµq is the thick black line in Fig. 1a, Vkgpµq

the red line, and Vkgpµ0q “
µ0

µ
. Notice that if µ0 ě µ, then λkg will be uninformative.

Otherwise, λkg splits the prior to posteriors 0 and µ. This is equivalent to the seller

reporting ‘like new’ with conditional probabilities λpµ|θ “ hq “ 1 and λpµ|θ “ lq “

µ0

p1´µ0q|l|
. The customer optimum is full information, with payoffs pµ0, µ0q in Fig. 1b.

Finally, we assume that informative Bayesian persuasion cannot be replicated in

a one-shot cheap talk equilibrium of the stage game. Defining Vctpµq as the sender’s

maximal equilibrium payoff in the one-shot version of the game, our assumption is15

Assumption 1 For every µ P ∆Θ, Vkg pµq ą v pµq implies Vkg pµq ą Vct pµq.

Assumption 1 implies that whenever λkg is informative the sender is not indifferent

14If there are many such actions, apµq (respectively, apµq) is an arbitrary selection among them.
15Lipnowski and Ravid (2020) show Vct is well-defined and characterize it geometrically for state-

independent v: Vct is the smallest quasi-concave function everywhere weakly greater than v.
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Figure 1: Bayesian persuasion in example 1
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between all posteriors in supp λkg, but imposes no such requirement at priors for which

λkg is uninformative. For this reason, it is not very restrictive.16

2 Persuasion with Complete Public Records

We begin by investigating how well repetition substitutes for ex ante commitment in

persuasion with complete public records—the standard setting in repeated games. For

complete records, we denote the set of (discounted average) PBE payoff pairs by Epµ0, δq.

2.1 Long-Run Persuasion as Costly Persuasion

Our setting features repeated play and no exogenous commitment. Nonetheless, we

show an analogue of KG’s belief-based approach still applies. This helps us reduce

a dynamic problem down to a static costly persuasion problem. Such an approach

is convenient: it facilitates comparison with the Bayesian persuasion benchmark and

allows us to geometrically characterize the limitations of long-run persuasion.

To see this, note first that the game described in section 1 has an associated ‘direct

16Functions violating Assumption 1 are non-generic (Best and Quigley, 2017) .
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game’, identical except that the message space is now the set of recommended beliefs

∆Θ. In this direct game, we identify the sender’s (mixed) strategy with a function

λd : H Ñ ∆∆Θ, specifying an information structure at each public history.17 Receivers’

strategies and beliefs, denoted ρd and µd respectively, are defined analogously to those in

section 1 (see Appendix A). In a direct game, there is no reason for receivers’ equilibrium

beliefs to coincide with mt or for the sender’s chosen information structures to even be

Bayes plausible. Still, we introduce a class of equilibria in which these features arise:

Definition 1 A direct equilibrium is a PPBE
〈
λd, ρd, µd

〉
of the direct game, in

which for all ht P H: (i) λdphtq P Λ pµ0q, and (ii) µd pht,mtq “ mt, @mt P supp λphtq.

Clearly, the direct equilibrium (DE) concept applies only to the direct game, and our

analysis takes this for granted from here. DE is the analogue of the belief-based ap-

proach of KG to long-run persuasion: condition (i) requires that the sender’s equilibrium

strategy induces a Bayes plausible distribution over recommended beliefs at each public

history of the repeated game, and condition (ii) requires that the receivers’ beliefs match

the sender’s recommendations on path. Unlike KG, DE additionally imposes equilib-

rium incentive constraints, which capture, inter alia, the sender’s lack of commitment.18

Moreover, in DE the sender communicates only about θt, but not his private history.

Nonetheless, the next two results show the belief-based approach is still without loss:19

Lemma 1 A PBE of the game induces a collection of marginal distributions over

pθt, at, ωtq, t “ 1, 2, . . . , if and only if there is a DE that induces the same marginals.

Lemma 1 tells us that we can characterize the set of PBE outcomes by focusing

on DE alone. As payoffs are additively separable over time, the relevant outcomes are

the marginal distributions of the contemporaneous variables at each time t. The proof

shows how to relabel on-path messages so that they can be interpreted as recommended

beliefs without introducing measurability issues. The next proposition applies the re-

cursive techniques of Abreu et al. (1990) to show that the DE payoff set can be fully

characterized by information structures with bounded support.

17The marginals λdphtq are generated by a public strategy σ : H ˆ Θ Ñ ∆∆Θ. See Appendix A.
18As deviations from λdphtq need not live in Λpµ0q, the sender’s incentives are the same as in PBE.
19Lipnowski and Ravid (2020) have a similar result in the context of one-shot cheap talk.
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Proposition 1 Epµ0, δq is compact, convex, and increasing in δ in the set inclusion

order. If pu, vq P Epµ0, δq, there is a DE in which |supp λphtq| ď |Θ| ` 1, @ht P H, and

payoffs are pu, vq.

As off-path messages are easily disciplined, no new issues arise from our sequential

stage game and the set of DE payoffs coincides with the set of perfect public equilibrium

payoffs, to which recursive tools apply. That |supp λphtq| can be uniformly bounded

is a consequence of the convexity of Epµ0, δq and the finiteness of Θ. As Epµ0, δq is

compact, a sender-optimal DE exists, with payoff:

Vdepµ0, δq “ maxtv : pu, vq P Epµ0, δqu. (1)

Trivially, Vde is bounded above by Vkg. After all, the sender is constrained not only by

Bayes plausibility but also by incentive compatibility at each history. To establish a

more meaningful bound, define vθpλq :“ minµPsuppλ|θ v pµq as the sender’s worst payoff

induced in state θ by a λ with finite support. We can now apply Fudenberg et al. (1990)

to DE, reducing the dynamic problem to one of costly (one-shot) Bayesian persuasion.20

Proposition 2 (Fudenberg et al., 1990) The sender’s optimal continuation payoff

in any long-run persuasion game is bounded above by

max
λPΛpµ0q

vpλq ´ cpλq, (CP)

where cpλq :“ Eλ rvpmq ´ vθpλqs ě 0. If monitoring is perfect, then there exists δ ă 1

such that Vdepµ0, δq is equal to (CP) for all δ P rδ, 1q.

The sender’s equilibrium payoffs can never exceed those he would get if he could

commit to an information structure but was only able to receive his worst payoff in each

state. In order to persuade any receiver, the sender’s equilibrium information structure

must be credible: he must prefer it to any deviation. Hence, if his optimal information

structure involves mixing between messages in some state θ, he must be indifferent

between them in that state. In the sender’s best equilibrium, this indifference requires

that each message m induces an on-path punishment vpmq ´ vθpλq. This exactly offsets

the stage gains of each message relative to the worst, implying an expected punishment

20Since it is a direct application, we omit the proof. Mathevet et al. (2022) also identifies this bound.
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cost of cpλq and pinning down the upper-bound. Figure 2a illustrates this for example

1 with µ0 ă µ; the equilibrium payoff set is a strict subset of C. Here, the seller can do

no better than an equilibrium in which he provides full information on path.

2.2 The Limits of Long-Run Persuasion

Expression (CP) provides the best case for repetition as a substitute for commitment.

Hence, in this section, we assume monitoring is perfect and δ sufficiently large.21 Under

these conditions, (CP) suggests partitional information structures are particularly rel-

evant. An information structure is said to be partitional if it is generated by a pure strat-

egy. For any such pure strategy there is a corresponding partition of Θ, P “ tP1, ..., Pku

for which each message represents a claim that ‘θ is in Pi’. Given µ0, communication

over P induces an information structure λP (the obvious dependence on µ0 suppressed)

supported on tµiu
k
i“1, where µi “ pµi,θqθPΘ denotes the posterior distribution associated

with learning tθ P Piu.
22 Hence, µi lies in ∆Pi :“ tµ P ∆Θ : µθ “ 0, @θ R Piu.

23 As µi

is induced whenever θ P Pi, it occurs with probability λi :“ λPpµiq “
ř

θPPi
µ0,θ, and

the sender’s associated stage payoff is vPpµ0q :“
řk

i“1 λivpµiq. Partitional information

structures have the advantage of requiring no on-path punishment, i.e., cpλPq “ 0. Let-

ting PΘ be the set of all partitions of Θ, we define the sender’s maximal payoff from

such communication:

Definition 2 The partitional value function Vpart : ∆Θ Ñ R is defined by

Vpartpµq “ max
PPPΘ

vPpµq. (2)

Figure 2b illustrates Vpart in the context of example 1. Of course, Vpart ď Vde ď Vkg.

This simple fact helps to characterize the limitations of long-run persuasion.

Theorem 1 For a fixed prior, Vdepµ0q “ Vkgpµ0q if and only if Vkgpµ0q “ Vpartpµ0q.

Moreover, Vdepµ0q “ Vkgpµ0q for all priors if and only if Vpart is concave.

Theorem 1 first establishes that we can attain the Bayesian persuasion payoff at

some prior µ0 if and only if there exists some partitional λkg P Λkgpµ0q. Hence, a

21As we consider the patient limit here, we drop dependence of Vde on δ in the notation.
22Analogous to µ0,θ, µi,θ is the probability of state θ under the belief µi.
23This definition abuses notation but is convenient as it implies ∆Θ and ∆Pi live in the same space.
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Figure 2: Long-run persuasion in example 1
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direct comparison of Vpart and Vkg identifies the limitations of long-run persuasion. But

beyond direct comparison, it also provides an alternative approach to evaluating these

limitations based on the geometry of Vpart alone. Specifically, the second condition

implies that Vde “ Vkg if and only if Vpart satisfies Jensen’s inequality for all pairs in

the simplex.24 This can be beneficial: as Propositions 3 and 4 illustrate, evaluating

the payoffs of binary lotteries can be easier than direct comparison of value functions,

not least because finding Vkg can involve optimization over a much larger space than

that of binary lotteries (Lipnowski and Mathevet (2017)). Further, the theorem holds

independent interest: in settings where knowledge of prior beliefs is scant, it identifies

when long-run incentives robustly substitute for commitment.

For the first equivalence, sufficiency is immediate. To see why Vpartpµ0q “ Vkgpµ0q is

also necessary, consider the case in which λkg P Λpµ0q uniquely maximizes the sender’s

payoff.25 Now suppose that λkg is not partitional but Vdepµ0q “ Vkgpµ0q. This implies

that in some state θ, λkg induces at least two beliefs µ1, µ2 with identical payoffs

(otherwise, a punishment would be associated with one of them). Since λkg is uniquely

optimal, v must be strictly greater at µ1 and µ2 than at any µ on the line segment

connecting them: vpµq ă vpµ1q “ vpµ2q. Yet, for any prior µ on this line, a splitting

to tµ1, µ2u yields payoff Vkgpµq ą vpµq and is a one-shot cheap talk equilibrium. Hence

24In KG, the sender can benefit from persuasion if and only if cav v ą v; relatedly, a corollary of
Theorem 1 is that the sender benefits from ex ante commitment power if and only if cav Vpart ą Vpart.

25The argument is similar in spirit for multiple maximizers, albeit a little more involved.

13



Vctpµq “ Vkgpµq ą vpµq, violating Assumption 1.

The second equivalence follows quickly from the first. Indeed, the necessity of con-

cave Vpart is virtually a restatement of the first condition. Sufficiency follows from

two observations: first, since silence is itself trivially partitional, Vpart must satisfy

v ď Vpart ď Vkg; second, Vkg is by definition the smallest concave function that is ev-

erywhere weakly greater than v. Hence, if Vpart is concave, it must everywhere equal

Vkg.

In our leading example, it is clear from Figure 2b that Vpart is not concave. Moreover,

Vde ă Vkg at any prior where the sender can benefit from persuasion, i.e., µ0 ă µ.

However, it is not hard to find conditions under which Vde “ Vkg for all priors. For

instance, Vpart is trivially concave when v is either concave or convex: in each case

a single partition (the coarsest and finest, respectively) attains Vkg everywhere. We

leverage Theorem 1 to ask how these two observations generalize. First, what are

the limitations of long-run persuasion when actions are finite? Second, under what

conditions does communication over a single partition always attain Bayesian persuasion

payoffs?

We answer the first question under the additional assumption that receivers have

a strict preference ordering over actions in A for each θ P Θ: if a ‰ ã then u pθ, aq ‰

u pθ, ãq. We call these preferences conditionally strict.26

Proposition 3 Suppose A is finite and receivers have conditionally strict preferences.

There is a set Q Ă ∆Θ with Lebesgue-measure 0 such that for all µ0 R Q

1. µ0 P argmax
∆Θ

vpµq; or

2. Vkgpµ0q ą Vpartpµ0q.

When µ0 P argmax vpµq, long-run persuasion trivially attains the KG benchmark. Yet,

as the receiver will take the sender’s favorite action anyway, he cannot benefit from

persuasion. By contrast, when the sender can actually benefit from persuasion, long-run

persuasion almost always falls short of the KG benchmark. In short, long-run incentives

are typically a costly substitute for commitment whenever actions are finite.27

26Such payoffs are clearly generic, in the sense that they form an open and dense set in R|Θ|ˆ|A|.
27Lipnowski and Ravid (2020) (Corollary 3) identify a related result for one-shot cheap talk.
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To prove this, we show that for almost all µ R argmax v there exists a splitting of

µ to tµ1, µ2u for which the partitional value function Vpart violates Jensen’s inequality.

Let the optimal partition at µ be P . Specifically, we show µ2 can be chosen so that

Vpartpµ
2q exceeds vPpµq, and µ1 picked close enough to µ such that the payoff from

disclosing tθ P Piu satisfies vpµ1
iq “ vpµiq; the latter is a consequence of conditionally

strict preferences. As vP is linear in probabilities and Vpart is a maximum over all

partitions, it is easy to see that αVpartpµ
1q ` p1´αqVpartpµ

2q ą Vpartpµq, where α P p0, 1q

satisfies αµ1 `p1´αqµ2 “ µ. This geometry has a familiar informational interpretation:

starting from any λP , the sender can almost always ‘split’ posteriors in such a way that

the receiver’s induced action either remains unchanged, or switches to an action the

sender prefers.28

In reality, many organizations claim to use partitional communication. For instance,

Moody’s states that their ‘probability of default rating’ ranks creditworthiness accord-

ing to their best estimate of default probability.29 Similarly, many schools and national

education systems report letter grades based on a partitioning of the percentage scores

that students receive on exams and coursework.30 Moreover, the use of these categories

often appears relatively stable even as the underlying environment changes. For exam-

ple, investment grade bonds maintain low default rates even during recessions.31 When

can such categorization attain Bayesian persuasion payoffs, irrespective of prior beliefs?

Proposition 4 A partition P P PΘ satisfies vP “ Vpart “ Vkg if and only if:

(i) vP ě v, and

(ii) v is concave on ∆Pi, i “ 1, . . . , k.

Proposition 4 provides necessary and sufficient conditions for communication over a sin-

gle partition to achieve the Bayesian persuasion payoff irrespective of priors. Of course,

these conditions are also sufficient for Vpart to be concave. Condition (i) compares P
28The class of problems studied in Proposition 3 is therefore one in which solving the commitment

problem can be hard (Lipnowski and Mathevet, 2017) and yet evaluating the geometry of Vpart simple.
29See page 14 of their rating and symbols documentation.
30In these examples, we interpret the state as a (potentially noisy) signal, and the rankings as

monotone partitions of that signal. Of course, we cannot verify whether these organizations actually
abide by their purported rules, only that such communication would be costless in our setting.

31To the extent that recessions represent a fall in the prior ‘quality’ of bonds, this stability suggests
that ‘investment’ grades are categorized according to the same fundamentals throughout.
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with a single alternative partition: it requires that the sender always (weakly) prefer

communicating partition P to nothing at all. By contrast, it imposes nothing on the

relative payoff from other partitions. The second condition requires that the sender’s

payoff be concave on the set of beliefs that correspond to a receiver learning tθ P Piu, for

each element of the partition. An application of Jensen’s inequality shows that under

condition (ii), vP is concave on ∆Θ. But then, by an almost identical argument to that

in Theorem 1, condition (i) implies that vP and Vkg must be the same.

These conditions can be interpreted in terms of the nature of conflicts of interest

between the sender and receiver. Condition (i) represents an alignment of interests

between sender and receiver: they both agree it is always better to share information

about the element Pi P P in which θ lies. However, their alignment ends here. While a

receiver wants ever more information, condition (ii) implies the sender never wants to

provide any further information distinguishing realizations of the state within Pi.

2.3 Imperfect Monitoring

The results of Fudenberg and Levine (1994) imply that under imperfect monitoring

the costs of long-run persuasion only increase. Indeed, even partitional information

structures may now attract on-path punishments. We use example 1 to illustrate how

these results apply in our setting. Consider an equilibrium in which the sender provides

full information whenever possible (i.e., when not being punished). To prevent mis-

selling (announcing ‘like new’ when θ “ l), the seller must be punished for a bad review

(ω “ b). Since this would occur with probability p, the minimal punishment cost κ

needed to support full information must satisfy the indifference condition 1 “ δpκ.

However, unlike perfect monitoring, the seller can now also suffer a bad review when

θ “ h and thus pays κ with probability 1´p.32 As this is true at every history where his

advice is credible, his equilibrium payoff is bounded above by µ0 ´µ0
1´p
p
. Moreover, as

punishments necessitate less information, imperfect monitoring harms customers too;

one can show their (discounted) payoffs are also bounded above by µ0 ´ µ0
1´p
p
.

32Note, the p “ 1 and perfect monitoring payoff sets are identical. The only difference in the p “ 1
case is that θ is not revealed after refusals. However, as it is not necessary to discipline the seller for
sending messages that induce his worst stage payoff, we can still support the same equilibrium payoffs.
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3 Persuasion with Incomplete Public Records

It is natural to conjecture that by providing receivers less information on which to base

punishments, incomplete public records only exacerbate the problems identified in sec-

tions 2.2 and 2.3. Indeed, in the limiting case of a completely uninformative record only

stage Nash equilibria can be sustained. Yet, in many markets coarse summaries such

as star ratings, badges, or certificates are adopted over more informative alternatives.

In this section, we introduce a third-party designer (the ‘platform’) who can commit to

rules that determine what incoming receivers observe about ht. With such a designer,

we show how any information structure that the sender prefers to one-shot cheap talk

can be implemented with almost no cost. But first, we illustrate how pooling histories

can increase equilibrium payoffs by persuading receivers to adopt strategies that would

not be incentive compatible could they observe the complete feedback history.

3.1 Pooling Histories to Persuade

To see how pooling histories can improve payoffs, return to the setting of example 1 with

imperfect monitoring and p ă 1. Now, consider the following simple incomplete record:

the customer at t “ 2 observes no information about t “ 1, but all other customers

observe ht. That is, r2ph2q “ H, h2 P H2, and rtphtq “ ht otherwise. As no other part

of the game is changed, any increase in payoffs must arise because the coarse record

‘persuades’ the t “ 2 customer to adopt a behavior incompatible with her observing h2.

With this record, there is a PBE in private strategies with payoffs exceeding the

Fudenberg and Levine (1994) bounds described in section 2.3 (see the Online Appendix

for details). The seller provides full information at t “ 1 and again at t “ 2 if ω1 “ b;

yet, if ω1 ‰ b, he sends m2 “ ‘like new’ irrespective of θ2. In each of these periods, the

customers buy if and only if mt “ ‘like new’. From t “ 3, play is determined as follows:

if ω1 ‰ b, players progress to the full information continuation of section 2.3, regardless

of ω2. However, if ω1 “ b the seller is punished with a babbling equilibrium for a fixed

number of periods before reverting to ‘full information’; if ω2 “ b as well, then this

punishment phase is lengthened. For a range of parameters, this is an equilibrium. In

particular, since the customer at t “ 2 does not observe ω1 and the seller tells the truth

when ω1 “ b, she finds a ‘like new’ message credible enough to buy if ω1 “ b is likely and
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µ0 is not too low. In this way, credibility is extended—punishment free—from histories

at which the seller is incentivized (ω1 “ b) to ones where he is not (ω1 ‰ b).

Relative to the full information outcome of section 2.3, this equilibrium guarantees

the seller a punishment-free sale at t “ 2 if he avoids a bad review in period 1. Nec-

essarily, this continuation payoff exceeds the Fudenberg and Levine (1994) bound for

the seller. Moreover, this higher continuation also provides an extra incentive to avoid

a bad review at t “ 1, reducing the required punishment associated with credible com-

munication at t “ 1. Finally, less punishment (less babbling) also benefits customers.

We show this can more than compensate for the cost of occasionally buying from an

uninformative seller—increasing average customer payoffs too.

These gains relied on two features of the incomplete public record: the pooling of the

feedback histories ω1 “ b and ω1 ‰ b at t “ 2, and their subsequent separation for t ą 2.

The pooling implies that the private strategy induces a single ‘average’ distribution over

posteriors (call it λ2) at both ω1 ‰ b and ω1 “ b, persuading the customer to adopt

a strategy that would be suboptimal could she observe h2. The subsequent separation

allows the seller’s behavior to be incentivized at the two histories as if the record were

complete. In this manner, λ2 can be induced via two pure stage strategies, each cheaper

to incentivize than a public strategy inducing λ2.
3334

More generally, any incomplete record that improves payoffs must persuade some

receiver to adopt a behavior that would violate incentive compatibility could she observe

the complete feedback history ht. To see this, consider any incomplete record with a

corresponding equilibrium strategy profile that yields payoffs pu, vq R Epµ0, δq. Clearly,

there is a strategy profile when rt “ ht that induces exactly the same distribution over

messages and actions at every ht. By construction, this profile cannot be an equilibrium

with complete records, i.e., it must violate incentive compatibility for someone. As the

sender’s incentives are identical in both cases (given receivers’ strategies), some receiver

must have a profitable deviation. Hence, any improvement must rely on altering the

receivers’ incentives by controlling the information they have about history.

33By contrast, if ω1 remained hidden in all subsequent periods, the seller’s continuation payoff from
any strategy would be independent of ω1. In this case, for any equilibrium in private strategies there is
a payoff equivalent one in public strategies, and the bounds of section 2 must apply. This is the same
reason that private strategies cannot increase payoffs when the record is complete. See Lemma 2 in
Appendix A for the argument with complete public records.

34This also implies that incomplete records can improve payoffs only if they support new equilibria
in private strategies. Indeed, any PPBE with an incomplete record is also a PPBE when it is complete.
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3.2 The Commitment Set by Design

Increasingly, online platforms use badge systems to publicly record participants’ pre-

vious interactions. These systems monitor the participant during evaluation phases,

collecting reviews and complaints about misleading descriptions. After each evaluation,

the platforms publicly award or withdraw a ‘badge’ based on whether the distribution

of reviews or complaints meets a set of standards decided by the platform. Finally, they

hide some feedback data from the customers, while making it available to the suppliers.

Consider a platform which can design the public record, prt,Rtqt. A badge system

is a binary public record prt,Rtqt where Rt “ tG,Bu, @t. We interpret G as a public

badge given to the sender and B as absence thereof. A badge system is simple if it

can be described by three parameters: (i) the length of evaluation phases, Γ P N;
(ii) the length of suspension phases, β ˆ Γ P N; and (iii) a set of standards, S,
that reflect the outcomes required for a sender to retain a badge. More precisely, the

standards define, for each possible m P ∆Θ and all ω P Ω, a set Spmq of allowable joint

frequencies spmq over pm,ωq.35 As each message induces an action in equilibrium, these

can be interpreted as targets for receivers’ reported experiences.

Given these parameters, a simple badge system (SBS) works as follows: at t “ 1,

the sender is given the badge (r1 “ G). This initiates an evaluation phase, throughout

which the badge is retained. At the end of an evaluation phase, feedback obtained

during that phase is compared against the standards. Specifically, let

ℓt pm,ωq “
1

Γ

t
ÿ

τ“t´Γ`1

1ppmτ , ωτ q “ pm,ωqq (3)

be the realized frequency of pm,ωq in the Γ interactions preceding t ě Γ, where 1 is the

indicator function, and let ℓt pmq “ pℓt pm,ωqqωPΩ. Then if ℓΓpmq R Spmq for some m,

the sender loses the badge for β ˆ Γ periods. Otherwise, his badge is renewed. After

this, the entire process restarts.

We aim to understand the scope for these systems to reduce the cost of incentivizing

credible communication. To this end, we consider a setting in which arriving receivers

do not initially know the date on which the sender is next evaluated. Similarly to

35Each spmq is a feasible vector of joint probabilities over pm,ωq, ω P Ω, whose sum must of course
not exceed 1. Formally each spmq P ∆cΩ :“ ts P R|Ω| :

ř

ωPΩ spm,ωq ď 1, s ě 0u.
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Kremer et al. (2014), we assume receivers arrive uniformly at random during evaluation

phases and do not observe t. This simplifies analysis and only further limits receivers’

information about ht, thereby leveraging the insight of section 3.1. In section 4, we show

how platforms can create similar uncertainty if arrivals are nonrandom. Furthermore,

we focus on sender-preferred selection, i.e., the receiver always plays apµq. We fix

µ0 P int∆Θ, and make two additional assumptions:36

Assumption 2 |Ω| “ |Θ|, and feedback tpppθ | ωqqθPΘuωPΩ is linearly independent.

Assumption 2 slightly relaxes the standard identifiability condition in repeated

games (recall we allow some a1 P A to be uninformative about θ). If this assumption

is violated, the sender’s average strategy cannot be accurately monitored even with

infinite data. Denoting the closure of a set X by clpXq, we also assume the following:

Assumption 3 For any µ P ∆Θ, there exists an open set Xµ Ă ∆Θ such that µ P

clpXµq, and vpµq is a continuous function on clpXµq.

Assumption 3 is a mild restriction. It allows for discontinuities in vpµq, such as

in example 1, but rules out knife-edge cases where the receiver’s action (and hence v)

changes radically after every small perturbation.37

Under these assumptions, we establish the value of simple badge systems as δ Ñ 1.

To do so, we require three definitions. First, normalize the sender’s worst one-shot cheap

talk payoff to 0, and define C :“ tpu, vq : u “ upλq, v “ vpλq ą 0 for some λ P Λpµ0qu—

note C assigns to λ the sender-preferred payoff. Second, for any PBE, we define G-
information to be the equilibrium distribution over posteriors given r “ G. Third, a

limit SBS-equilibrium is a sequence of SBS prt,Rtqt,n, patience levels δn Ñ 1, and

corresponding PBE ⟨σ, ρ, µ⟩n, such that discounted average payoffs converge.

Theorem 2 Let Assumptions 2 - 3 hold, and µ0 P int ∆Θ. For any pu1, v1q P C, there
is a λ‹ P Λpµ0q and a limit SBS-equilibrium, such that: (1) pupλ‹q, vpλ‹qq “ pu1, v1q; (2)

G-information converges to λ‹; and (3) payoffs converge to pu1, v1q.

36µ0 P int∆Θ is without loss of generality for payoffs: simply exclude any θ for which µ0,θ “ 0. This
ensures the continuity properties of vpµq extend to vpλq on Λpµ0q appropriately (see Lemma 13).

37In writing apµq, we implicitly assume the receiver’s best response is unique on clpXµq. Its conti-
nuity on that set shortens the proof of Theorem 2 by ensuring the existence of equilibria where receiver
strategies are pure. The continuity of vpµq is necessary for our argument.
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Theorem 2 shows that the benefits of coarse rating systems like those found online

can be large: they can efficiently solve imperfect monitoring problems, driving on-path

punishment close to zero. In stark contrast to section 2, simple badge systems allow a

sender to capture the full value of his communication. Of course, Theorem 2 implies

badge systems can be used to implement Bayesian persuasion payoffs, but their scope

is much greater—they can support any payoff profile in C. For instance, every feasible

payoff in example 1 (Figure 1b) can be supported with some set of standards.

As pu1, v1q P C, there is a finite-support λ‹ with pupλ‹q, vpλ‹qq “ pu1, v1q. In the

proof, we construct a corresponding sequence of simple badge systems that admit ‘good’

equilibria as δ Ñ 1. These systems involve long evaluation phases and standards which

allow only distributions of pm,ωq close to the one induced by λ‹. Under Assumption 2,

we can choose standards tough enough that if the sender uses a time-average strategy

that differs more than a little from λ‹, he loses his badge, and yet lenient enough that

if he adopts λ‹ each period, he keeps his badge with probability close to 1.

For any ε ą 0, we must prove there is a point in the sequence after which each

SBS admits a PBE with payoffs within ε of pu1, v1q, for some δ.38 The key step is to

show that the sender’s best response and receivers’ beliefs can be mutually trapped

in a closed subspace which guarantees payoffs within ε of pu1, v1q. To see this, note

that suspensions induce one-shot cheap talk. So long as beliefs satisfy µpmq « m, a

patient sender desires to avoid this punishment and so plays close to λ‹ on average (by

an application of Radner (1985)). On the other hand, as the only historical data the

receiver can condition on is r “ G, her beliefs depend only on the sender’s time-average

strategy. If this is ‘close to’ λ‹, then Bayes’ rule implies beliefs do satisfy µpmq « m.

From here, existence follows by a fixed-point argument. Thus, in the limit, equilibrium

payoffs are pu1, v1q and the equilibrium information structure is the corresponding λ‹.

While it is well known that it can be more efficient to discipline an agent’s average

behavior—for instance, via review strategies (Radner, 1985) or linking decision problems

(Jackson and Sonnenschein, 2007; Escobar and Toikka, 2013)—such approaches are

not possible when the record is complete. This is because these strategies require

receivers take actions that are not incentive compatible at certain feedback histories.

For example, the lenient standards of the SBS imply there must be some histories at

38There is nothing ‘knife-edge’ about the sequence δn. Indeed, we show that for each such SBS, if
δ ě δn, then a PBE with the desired payoffs exists. See the proof of Theorem 2, pg.56.
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which the sender can send any message without fear of punishment. If the receiver knew

she were at such a history, she would deviate (see Example 2). The SBS resolves this

problem by hiding these histories from the receivers. As we argued in section 3.1, this

kind of persuasion is necessary for any incomplete record to support payoffs exceeding

the Fudenberg and Levine (1994) bound. Theorem 2 shows these gains can be large.

We illustrate Theorem 2 with a simple badge system designed to attain the Bayesian

persuasion payoff for the seller in the online market setting. In what follows, we focus

on behavior during evaluations (recall suspensions induce babbling).

Example 2 Consider example 1 with µ0 “ 1
3
, µ “ 0.5, and arbitrary p ą 0.5. Let

ϵ “ Φp´6q ≊ 0.00034, where Φ is the standard normal c.d.f. Consider a simple badge

system with standards that impose an upper limit on the frequency of bad reviews: the

seller keeps his badge if ℓΓp‘like new’, bq ď ℓ̄ :“ 1
3

´ 1
6
ϵp. Set β “ 1 and let Γ be

some large integer satisfying 6

b

ℓ̂p1´ℓ̂q
Γ

ď 1
6
ϵp, where ℓ̂ “ 1

3
is the expected frequency

of feedback p‘like new’, bq under the stage strategy associated with λkg.39 This system

admits a limiting equilibrium with an average payoff within ϵ of Vkgpµ0q “ λkgpµq “ 2
3
.

To illustrate the argument, we examine the seller’s incentives over a simplified

class of strategies that send ‘like new’ and ‘used’ with constant conditional probabili-

ties throughout the evaluation phase. To this end, let σ‹ be a constant strategy anal-

ogous to choosing λ‹ every period, where supp λ‹ “ {0, µ‹u, µ‹ “ µp1 ` ϵ
2´ϵ

q, and

λ‹pµ‹q “ λkgpµqp1 ´ 0.5ϵq. Suppose the seller adopts σ‹ and that µp‘like new’q ě 0.5.

As Γ is large, the central limit theorem implies the distribution of ℓΓp‘like new’, bq is

approximately N pℓ‹, ℓ
‹p1´ℓ‹q

Γ
q, where ℓ‹ “ ℓ̄ ´ 1

6
ϵp is more than 6 standard deviations

below ℓ̄. Thus, the seller keeps his badge with probability close to 1 ´ ϵ. It is then easy

to show that, as δ Ñ 1, the seller can secure an average payoff of at least 2
3

´ ϵ with σ‹.

Consider now a deviation to the constant strategy σ̂ associated with λkg. During

evaluation, the increase in sales from this—or indeed any—deviation must be bounded

above by p1´λ‹pµ‹qqΓ « 1
3
Γ (the increase from sending ‘like new’ with probability 1 every

period). Yet, as ℓ̂ and ℓ‹ are symmetric about ℓ̄, the deviation increases the probability

of a suspension by at least 1´2ϵ « 1, costing the seller an expected λ‹pµ‹qΓ « 2
3
Γ sales.

Thus, as δ Ñ 1, deviating to σ̂ cannot be profitable. This applies a fortiori to strategies

that target a rate of sales greater than λkgpµq, because the seller loses the badge with an

39For any λ1 with support t0, µ1u, the probability of feedback pµ1, bq is µ0p1 ´ 2pq ` λ1pµ1qp.
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even higher probability. Thus, with the restriction to constant strategies, the supposition

of µp‘like new’q ě 0.5 is justified.

Of course, a constant strategy cannot be optimal. To see why, suppose in the final

period of an evaluation phase that ℓΓ´1p‘like new1, gq ą ℓ‹. As the seller will keep his

badge regardless of his final report, he will claim ‘like new’ irrespective of θ. Hence, the

seller will adopt a private feedback-dependent strategy. Nonetheless, a similar argument

can be applied. We show that to meet the standards with high probability, he must adopt a

strategy that is close to σ‹ ‘on average’. That is, averaging the strategy over time, the ex-

ante probability of sending message m given θ is close to σ‹pm | θq. Hence, because the

badge system keeps customers in the dark about both arrival time and feedback history,

customers form beliefs as if they were facing a constant strategy close to σ‹.

A similar argument to that in example 2 applies to any payoff profile in C. Clearly
though, each such profile is enforced by a different set of standards. For instance,

if the platform wished to implement full information payoffs then it would have to

replace the threshold ℓ̄ with 1
3
p1´ pq; the choice of standards affects the distribution of

surplus between market participants.40 This suggests that in reality, platforms’ ratings

systems—and the resulting communication on them—may be shaped by the platforms’

relative incentives to attract sellers and customers.

Finally, we briefly discuss two aspects of our analysis. First, whether complete or

incomplete, public record systems do require some source of commitment themselves.

It is not our aim to explain that commitment but to tease out its implications for an

uncommitted sender. Nonetheless, we note that the systems discussed are partitions

of history. Thus, long-run incentives may serve as an efficient source of commitment.

Moreover, the platform faces many copies of the same problem; hence, similar to Jackson

and Sonnenschein (2007), the distribution of badges could act as the source of discipline.

Second, unlike the mediators typically analyzed in repeated games, our platform cannot

commit to private messages. This reflects most online platforms, who take a hands-off

approach to individual transactions, perhaps because mediating every single interaction

is too costly. By ignoring mediation, we might worry that something is lost. Yet despite

limiting the platform’s power, Theorem 2 shows that badge systems can still implement

all commitment payoff profiles preferred to one-shot cheap talk.

40Any payoff on the efficient frontier of C can be sustained with an upper-threshold on ‘bad’ feedback,
but we need the tight two-sided standards to get the whole set (See proof of Theorem 2).
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4 Discussion: Alternative Review Systems

In section 3.2 the platform’s control over public records was strong: it could privately

collect feedback from receivers, it could prevent receivers from accessing this feedback

directly, and it benefited from the random arrival of receivers (further limiting their

information). Moreover, communication was the only source of moral hazard. Here we

discuss how review systems with less control can still improve outcomes. In doing so

we also highlight the costs and benefits of each one relative to simple badge systems.

4.1 Deterministic Arrival Systems

In section 3.2 receivers could not infer the time until the next evaluation. While infor-

mation on evaluation dates is often searchable, customer behavior online seems better

approximated by uncertainty over such details. Our results support their apparent dis-

interest: eBay’s strict standards incentivize badged sellers to almost always behave.

Hence even small attention costs would deter a search. Yet with more relaxed stan-

dards, incentives to find out these dates could rise. We briefly discuss the implications

of this here. The online appendix provides formal results in the setting of example 1.

As one might expect, such information can constrain the performance of some simple

badge systems. Nonetheless, when t is observable, the platform can replicate the effect

of random arrivals with a system that instead randomizes evaluation dates directly. If

the platform hides the (randomly chosen) evaluation dates from customers, it is as if

they had arrived randomly (see Proposition 7). Even if customers must be informed of

evaluation dates, the platform can still replicate the required uncertainty by adopting

more complex standards that depend on full sequences of outcomes rather than simple

averages (see Proposition 8).41 The idea is to make the sender endogenously create the

uncertainty by mixing between two non-stationary strategies.42 As with the SBS, such

systems still require receivers not observe the complete record to improve payoffs.

We view stochastic evaluation dates as just another interpretation of our random

arrival assumption. However, simple badge systems have three advantages over more

41We thank an anonymous referee for pointing us towards this system, which draws nicely on the
linking decisions insight of Jackson and Sonnenschein (2007) and Escobar and Toikka (2013).

42Our construction is reminiscent of a mediated equilibrium proposed in Sugaya and Wolitzky
(2018), with the additional constraint of sender indifference across strategies.
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complex evaluations. First, they are easier to identify and implement. Second, they do

not rely on common knowledge that the sender mixes with precisely the right probabil-

ities. Finally, simple badge systems do not require exact knowledge of δ.

4.2 Blind Sender Review Systems

In many cases the platform’s commitment to badge systems is easy to motivate. But in

the absence of an ability to discipline a third-party platform, customers could instead

maintain a distributed ledger of feedback themselves. Hence, we now consider whether

payoffs can be improved when receivers observe all feedback but the sender only has

limited access. We call this a blind sender review system. At each t the incoming

customer observes ht. Badges are again awarded to the seller based on evaluations of

standards, but now by the customers rather than a third party. The seller observes the

badges provided but not the individual feedback, ωt. Notice, such systems fall outside

our definition of public records; as they hide information from the sender rather than

the receivers, they improve payoffs via a different channel.

Proposition 5 Consider example 1 with imperfect monitoring, p ă 1. Using a blind

sender review system, full information payoffs pµ0, µ0q are attainable in the limit as

δ Ñ 1. The sender cannot earn payoffs greater than µ0 in any public PBE.

The proof uses a standard in which the seller loses his badge if and only if every

product sold receives bad feedback. Building on Abreu et al. (1991) and Fuchs (2007),

we construct an equilibrium in which a badged seller is continually disciplined to be hon-

est by ‘reusing’ the same threat of punishment, dramatically reducing their aggregate

cost. Moreover, there is now clearly no need to hide history from receivers.

Blind sender systems have two major limitations. As Proposition 5 shows, reusing

punishments alone cannot costlessly support non-partitional information structures.

When customers observe a finer feedback history than the seller, the logic of Proposition

2 still applies. Moreover, they can be fragile: if a seller can find out that he has even

a single good review, he can lie for the remainder of an evaluation without cost. This

may be one reason why sellers do observe the history of feedback on most platforms.
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4.3 Quota-Based Review Systems

Some platforms may receive very little feedback. Even without feedback, Margaria

and Smolin (2018) show how to obtain a folk theorem in a setting with a long-run

receiver and a sender with state-independent preferences. In the context of example

1, their equilibrium constructions make the seller indifferent between all sequences of

messages over long horizons. To generate indifference, the customer is required to

occasionally buy regardless of the seller’s claims. This is obviously not feasible with

short-run customers and complete public records. However, as the frequency of such

‘bad purchases’ is low as δ Ñ 1, we conjecture a badge system may be able to achieve

any payoffs in C. Even if this is true, feedback-free ratings would still have limitations:

they require exact knowledge of δ (to generate the indifference) and are not robust to

state-dependent payoffs. By contrast, simple badge systems are robust to both issues.

4.4 Simple Badge Systems for Other Forms of Moral Hazard

Online platforms face many forms of moral hazard beyond communication: sellers may

fail to deliver on time, hosts may fail to keep accommodation clean, or workers may

shirk. Simple badge systems can equally solve these problems. For the platform, the

key difference between communication and these classic moral hazards lies in how much

players can infer beyond the badge. In our setting additional historical information may

leak out (receivers can update after seeing the sender’s message). But classic moral

hazards do not suffer this leakage, so the argument underpinning Theorem 2 applies to

them a fortiori (see Corollary 1 in the online appendix). Indeed, subject to adjustments

of Assumptions 2 and 3, simple badge systems ought to support commitment payoffs

for any two-player stage game in the setting of Fudenberg and Levine (1994), as above.

5 Related Literature

Since Kamenica and Gentzkow (2011), a large body of work has sought to understand

strategic communication when a sender has exogenous commitment power.43 We con-

43For instance, Rayo and Segal (2010), Taneva (2019), Bergemann and Morris (2013), Ely (2017),
and Bizzotto et al. (2021).
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tribute to this literature by relaxing the commitment assumption. Perez-Richet (2014),

Salamanca (2021), Lipnowski et al. (2022), and Perez-Richet and Skreta (2022) study

persuasion when the sender has partial commitment power. Mathevet et al. (2022)

consider how well repetition substitutes for commitment when the sender may be an

exogenous ‘commitment type’. We examine persuasion when there is no hope of the

sender having exogenous commitment power. Moreover, we show that the design of

coarse public rating systems (and repetition) can substitute for a complete lack of

commitment on the sender’s part. Like us, Chakraborty and Harbaugh (2010) and Lip-

nowski and Ravid (2020) analyze persuasion when the sender cannot commit. Relative

to them, our contribution is to introduce an endogenous source of commitment.

Partitional information structures have gained attention for their simplicity, applica-

bility and tractability. Kolotilin (2018), Dworczak and Martini (2019), Mensch (2021),

and Kolotilin and Li (2021) identify conditions under which monotone partitional in-

formation structures are optimal.44 We identify a new, enforcement-based appeal of

partitional information structures and provide new conditions for their optimality.

We also relate to recent work on cheap talk in repeated games. Hörner et al. (2015)

and Margaria and Smolin (2018) examine such games between long-run players, and

obtain a folk theorem. Like us, Jullien and Park (2020) examine a setting with short-run

receivers. These papers all consider settings where truthful equilibria are without loss.

In our setting there is a meaningful role for persuasion. Aumann and Maschler (1995)

study a repeated zero-sum game with two infinitely patient agents and asymmetric

information about perfectly persistent stage payoffs, showing Bayesian persuasion is a

credible cheap talk outcome. We focus on complementary settings where the state is

changing, receivers are short-lived, and δ ă 1. Kuvalekar et al. (2022) study a problem

similar to ours, but with no monitoring at all of the sender’s accuracy.

Other papers have examined hiding history in repeated games. Sugaya and Wolitzky

(2018) shows how private monitoring with a mediator can help sustain a collusive agree-

ment by making it more difficult for firms to tailor deviations to market conditions in a

stochastic game. To isolate this channel, they assume perfect monitoring. By contrast,

we show how to eliminate inefficiencies caused by imperfect monitoring in stationary

44By contrast, non-partitional information appears in the Bayesian persuasion solutions to example
1, Brocas and Carrillo (2007), Gill and Sgroi (2008, 2012), Rayo and Segal (2010) and Alonso and
Câmara (2016).
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games.45 Abreu et al. (1991) and Fuchs (2007) hide history from long-run players when

monitoring is imperfect. Unlike them, we cannot exploit ‘reusable’ punishments (see

section 4.2). Instead, we show how receivers can be persuaded to provide more effi-

cient forms of incentive, allowing us to tackle both the imperfect monitoring and mixing

problems present in Fudenberg and Levine (1994). Bhaskar and Thomas (2019) pro-

vide a coarsening of records that mitigates inefficiencies in a repeated investment game

caused by bounded memory. While their inefficiencies could also be solved by providing

complete public records, our SBS can strictly improve on complete records.

Several papers, going back to Myerson (1986), have designed information in extensive-

form games to improve payoffs. Recently, Gershkov and Szentes (2009) apply this to

voting mechanisms, and Kremer et al. (2014), to social learning. We show how this idea

can be used to improve persuasion and the provision of efficient incentives in repeated

games more generally. Doval and Ely (2020) provide related tools for finite games, but

these do not apply to our infinite-horizon setting.

Dellarocas (2005) and Tadelis (2016) examine how online review systems can imple-

ment the Fudenberg and Levine (1994) bound. Our results show how review systems

can do better. Ekmekci (2011) shows how reducing a rating system’s memory can pre-

vent the collapse of reputations, à la Cripps et al. (2004), and improve seller payoffs; but

the existence of reputational types is necessary for making improvements. By contrast,

our badge systems yield Pareto improvements without any types at all.

6 Conclusion

We have analyzed a model with a meaningful role for persuasion where commitment

lies in repetition and a public record of past accuracy. When the public record is

complete, we gave necessary and sufficient conditions on the underlying persuasion

problem under which a loss of ex ante commitment is costless. Unfortunately, even if

the sender’s private information can be observed ex post, these conditions are often

not met. However, by applying information design tools to the public record, we can

costlessly support any form of communication the sender prefers to one-shot cheap talk.

45While their main results apply to a stochastic game, they do provide a numerical example where
mediation can improve payoffs in a stationary environment. In this example, monitoring is perfect.
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We conclude with some open questions. First, instead of examining cheap talk,

we could have examined long-run persuasion when the sender’s private information is

endogenously acquired, partially verifiable, or both. It is possible to construct examples

where such changes significantly alter communication outcomes to the detriment of both

parties. Second, how can commitment to the rules that generate the public record be

justified? As is common in the literature, this paper treated such commitment as given.

However, we suggested two routes toward justification: the platform as a third, long-

run player and the possibility of distributed ledgers (section 4.2). With the rise of

blockchain technologies, exploring the latter would also be interesting.
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Appendix A: Definitions & Proofs of Preliminaries

With complete public records, the sender’s strategy σ : HˆΘ Ñ ∆M , receivers’ strategies ρ :
HˆMˆr0, 1s Ñ ∆A and the belief system µ : HˆMˆr0, 1s Ñ ∆Θ are measurable functions
of the respective histories.46 We allow ht to include a history of public randomizations ζt „

U r0, 1s, which are each realized after mt and before at. At t “ 1 we also allow for a single pre-
play randomization device, ζ0. This timing is convenient, but not material, for our arguments
(see footnote 65). To reduce clutter, we may explicitly suppress ζ when it is peripheral to our
arguments. For subsets M̂ Ă M and Â Ă A, σpM̂ | ht, θtq and ρpÂ | ht,mt, ζtq respectively
denote the conditional probabilities with which the sender chooses mt P M̂ and the receiver
chooses at P Â. Likewise, µθpht,mt, ζtq denotes the conditional probability that θt “ θ given
pht,mtq. Profile ⟨σ, ρ⟩ induces a distribution P over histories ht in the usual way. To emphasize
the dependence of P and expectations, E, on ⟨σ, ρ⟩, we may write P⟨σ,ρ⟩, E⟨σ,ρ⟩. The sender’s
strategy is public if it can be expressed as σ : H ˆΘ Ñ ∆M . We write σ below where we feel
the need to emphasize a strategy is public. In what follows, we denote |Θ| “ N .

Equilibrium

Here we define a public PBE (PPBE) for complete records.47 PBE in which σ is not public
play little role in our analysis of complete records (see Lemma 2), so we leave their obvious

46In our analysis of the repeated game µ refers to a belief system—a function with range space
∆Θ. By contrast, in our geometric analysis of costly persuasion in section 2.2, note that we use µ to
represent a posterior—a member of ∆Θ. Despite this abuse, our meaning will be clear from context.

47Kuvalekar et al. (2022) give a related definition in a repeated cheap talk model without monitoring.
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definition to the reader. A PPBE is a triple ⟨σ, ρ, µ⟩ in which σ is public and

1. Sender optimality: Given ρ, σ satisfies

σ P arg max
σ̃

E⟨σ̃,ρ⟩
“
ř8

τ“1 δ
τ´1v paτ q | ht

‰

, @ht P H.

2. Receiver optimality: Given ⟨σ, µ⟩, ρ satisfies

ρ

˜

arg max
aPA

ř

θtPΘ

µθtpht,mtqu pθt, atq
ˇ

ˇ

ˇ
ht,mt

¸

“ 1, @pht,mtq P H ˆM.

3. Consistent beliefs: For ht P H P-a.e., θ1 P Θ and Borel subsets M̂ Ď M :

ÿ

θtPΘ

ż

M̂
µθ1 pht,mq dσ pm | ht, θtqµ0,θt “ µ0,θ1σ

´

M̂
ˇ

ˇ ht, θ
1
¯

where ζt has been suppressed. Conditions 1-2 require best responses at the relevant histories;
3 extends the condition that beliefs obey Bayes’ rule where possible to non-discrete histories.48

Direct Equilibrium (DE)

It is helpful to introduce separate notation for the direct game. We write md for messages

in ∆Θ, hdt :“
`

md
τ , ζτ , aτ , ωτ

˘t´1

τ“1
for a direct history of the direct game, Hd

t for the set of

time-t histories, and Hd for the set of all histories. We identify ‘direct strategies’ with
(measurable) functions λd : Hd Ñ ∆∆Θ, ρd : Hd ˆ ∆Θˆr0, 1s Ñ ∆A and beliefs with
µd : Hd ˆ∆Θˆr0, 1s Ñ ∆Θ. Note that λdphdt q refers to a probability measure on ∆Θ induced
at hdt , while for any Borel B, λdpB | hdt q yields a corresponding probability; ρd, µd are treated
similarly. To aid comparison with Bayesian Persuasion, λdphdt q is expressed as a marginal,
but should be understood to derive from conditional distributions λdp¨ | hdt , θtq (see condition
6 below). Formally, DE is a triple

〈
λd, ρd, µd

〉
satisfying:

4. Sender optimality: Given ρd, λd satisfies

λd P arg max
λ̃d

E⟨λ̃d,ρd⟩
“
ř8

τ“1 δ
τ´1v paτ q | hdt

‰

, @hdt P Hd.

5. Receiver optimality: Given
〈
λd, µd

〉
, ρd satisfies

ρd
ˆ

arg max
aPA

ř

θPΘ µ
d
θ

`

hdt ,m
d
t

˘

u pθ, aq

ˇ

ˇ

ˇ
hdt ,m

d
t

˙

“ 1, @phdt ,m
d
t q P Hd ˆ ∆Θ.

6. Consistent beliefs: For hdt P Hd P-a.e., θ1 P Θ, and Borel M̂d Ă ∆Θ

ÿ

θtPΘ

ż

M̂d

µdθ1phdt ,m
d
t qdλdpmd

t

ˇ

ˇ hdt , θtqµ0,θt “ µ0,θ1λdpM̂d
ˇ

ˇ hdt , θ
1q.

7. Obedience: µdphdt ,m
d
t q “ md

t for any md
t P supp λd

`

hdt
˘

48That is, the belief system µ a.e. equals the relevant Radon-Nikodym derivative.
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where λdp¨ | hdt q, ρdp¨ | hdt ,m
d
t q and µd

p¨q
phdt ,m

d
t q are the obvious conditional distributions, and

ζt is again suppressed. Conditions 4 - 5 express best response criteria. 6 requires receivers’
beliefs be consistent with Bayes rule, where possible. 7 is particular to the DE concept: it
requires that beliefs match the ‘recommended belief’ md

t , for messages in the support of the
sender’s strategy. Note, conditions 6 and 7 (evaluated at M̂d “ ∆Θ) together imply

ż

∆Θ
md

t dλ
d

´

md
t

ˇ

ˇ hdt

¯

“ µ0, (BP)

for P-a.e. hdt P Hd. That is, at each history the sender’s equilibrium strategy must induce a
Bayes plausible distribution over messages. DE imposes no such restriction on his deviations.

Lemma 1

We prove Lemma 1 in four steps: Lemma 2 justifies a focus on public PBE. Given any PPBE,
Lemma 3 then identifies the induced information structures as a measurable function of the
public history. As this function is not defined on direct histories, we perform a relabeling
which does yield appropriate replicating strategies and beliefs for the direct game. Lemma 4
verifies that these establish the ‘only if’ direction of Lemma 1; Lemma 5 proves the converse.

Lemma 2 For any PBE, there is a PPBE which induces the same marginal distributions
over pθt, at, ωtq, @t.

Since ρ is public and θt is i.i.d., the sender’s equilibrium strategy can always be modified by
replacing any θt-dependent randomization with its conditional expectation (given ht), without
affecting the sender’s payoff. This modification is public and obviously does not change
incentives. As the proof is just an application of the arguments in Theorem 5.2 Fudenberg
and Levine (1994), we omit it.49 The next lemma, which extends a result of Kamenica and
Gentzkow (2011) to our repeated setting, is a key step in connecting PBE and DE. Since µ is
a measurable map, µ´1pBq is a Borel subset of H ˆ M for any Borel B Ă ∆Θ. For the next
result, we make use of the conditional inverse map µ´1pB | htq “ tm P M : µpht,mq P Bu.

Lemma 3 For any public strategy σ : H ˆ Θ Ñ ∆M , there exists a measurable function
λ : H Ñ ∆∆Θ such that @ht P H,

ż

∆Θ
md

t dλ
´

md
t

ˇ

ˇ ht

¯

“ µ0, (4)

and, for any Borel subset B Ď ∆Θ,

λ pB | htq “
ř

θtPΘ σ
`

µ´1 pB | htq | ht, θt
˘

µ0,θt , ht-a.e. (5)

Proof : Since ∆Θ is a Polish space, there exists (Theorem 44.3, Bauer (2011)) a probability

49Measurability of the modified strategy follows trivially from the finiteness of θt. Details on request.
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kernel λ : H Ñ ∆∆Θ, a measurable function such that λphtq satisfies

ż

H

λ pB | htq dPphtq “ P rB ˆHs (6)

for each Borel B Ă ∆Θ and H Ă Ht, P-a.e. To establish (5), we show νp¨ | htq :“
ř

θtPΘ σ
`

µ´1 p¨ | htq | ht, θt
˘

µ0,θt—the distribution of posteriors induced at ht by σ—is a valid
version of λ. As ∆Θ is Polish, we need only show νpB | htq is measurable-ht for each Borel
B (Theorem 44.3, Bauer (2011)), and satisfies (6) almost everywhere. Fixing some Borel
B Ă ∆Θ, measurability follows from an argument almost identical to that in Billingsley
(1995) (pg. 232). To see that it satisfies (6), apply the law of iterated expectations to the

indicator 1
`

pht,mtq P µ´1pBq
˘

, recognizing that P
”

M̂ | ht

ı

“
ř

Θ σpM̂ | ht, θtqµ0,θ for any

Borel M̂ Ă M . To show (4), notice ν is a measure on ∆Θ (Billingsley (1995), pg. 185), corre-
sponding to the distribution of the random variable md

t “ µpht,mtq. The change-of-variables
formula applied to the left side of condition 3 for M̂ “ M confirms (4) holds for all ht. l

We cannot yet draw from Lemma 3 the conclusions of Lemma 1. This is because λ is a
function of ht, which is not a direct history. Lemma 4 below constructs a ‘well-behaved’ rela-
beling of the histories ht, strategies σ, ρ and the belief system µ which will form an appropriate
replicating DE. To make our argument, we first need to define some additional objects.

In an equilibrium ⟨σ, ρ, µ⟩, messages may not only influence current beliefs; they can also
coordinate continuation play. However, in a DE, messages correspond only to recommended
beliefs. Nonetheless, a public randomization device (p.r.d) can perform the coordination. To
this end, we encode messages with an invertible, measurable mapping f : M Ñ r0, 1s.50 In
a PPBE, each f pmtq is a random variable whose distribution derives from the equilibrium
measure P⟨σ,ρ⟩. By another application of Theorem 44.3, Bauer (2011), there exist kernels

φ : H ˆ ∆Θ Ñ ∆ r0, 1s, φ̄ : H Ñ ∆ r0, 1s, which satisfy, for any Borel Ŷ Ď r0, 1s, B Ď ∆Θ

P⟨σ,ρ⟩

”´

fpmtq,m
d
t

¯

P Ŷ ˆB
ˇ

ˇ ht

ı

“

ż

B
φ

´

Ŷ
ˇ

ˇ ht,m
d
t

¯

dλ
´

md
t

ˇ

ˇ ht

¯

(7)

P - a.e., and φ̄ phtq “
ş

∆Θ φ
´

Ŷ | ht,m
d
t

¯

dλ
`

md
t | ht

˘

. These are the conditional distributions

of fpmtq given
`

ht,m
d
t

˘

and ht, respectively, where m
d
t “ µ pht,mtq. With a small abuse, we

set ζt “ f pmtq below in our replicating DE. As will become clear below, ζt can be considered
a device on which continuation play is coordinated. From the view of our replicating DE, the
original PPBE is fixed and hence ζt is exogenous; indeed, in the DE below, the sender will be
able to choose md

t but not ζt directly. As we describe it, ζt is still not a traditional p.r.d.—its
distribution varies with ht. However, we emphasize our argument requires only that ζt has
the same distribution as fpmtq. Because of this, ζt can be considered a (history-dependent)
function of a true, i.i.d. uniform p.r.d. (see for instance Billingsley (1995), Theorem 14.1),
and hence we simply identify it with the latter; indeed, mt plays no explicit role in the DE.

50Since M is Polish, f exists and has a measurable inverse (by the Borel isomorphism theorem).
With this encoding, we focus attention on the ability of ζ to replicate any coordinating role of mt in
xσ, ρy. In principle, it may also have to replicate coordination due to public randomisation in xσ, ρy.
We suppress the second channel for the sake of clarity. However, we note there is a Borel isomorphism
between r0, 1s and r0, 1s2, and so there is an encoding that can simultaneously achieve both objectives.
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We also introduce a function d : H Ñ Hd that replaces each history in H with an appro-
priate direct history, defined inductively as follows: put dph1q “ H and for t ą 1,

d phtq “
`

d
`

ht´1

˘

, µ
`

ht´1,mt´1

˘

, ζt´1, at´1, ωt´1

˘

.

At each t, d updates the direct public history to include the realized time t´1 beliefs, actions
and feedback. As f and µ are measurable, so too is d.51 Notice also that d is invertible.

Not all histories in Hd need live in d pHq.52 However, to define a replicating DE, we must
specify direct strategies as a function of the full set Hd. To deal with this, we introduce a
‘projection’ from Hd into d pHq. Define a (measurable) state variable ψ : Hd Ñ Hd (on which
strategies will depend) by setting ψ

`

hd1
˘

“ hd1 “ H and, for t ą 1,

ψ
´

hdt

¯

“

#

`

ψ
`

hdt´1

˘

,md
t´1, ζt´1, at´1, ωt´1

˘

, if md
t´1 P supp λ

`

d´1
`

ψ
`

hdt´1

˘˘˘

;
`

ψ
`

hdt´1

˘

, µ
`

d´1 ˝ ψ
`

hdt´1

˘

, f´1 pζt´1q
˘

, ζt´1, at´1, ωt´1

˘

, otherwise.

ψ recursively updates histories by (i) recording the belief corresponding to the latest message,
if and only if it is consistent with the sender’s strategy σ at history ht´1 “ d´1

`

ψ
`

hdt´1

˘˘

,
and otherwise (ii) replacing the sender’s chosen message md

t with the one corresponding (i.e.,
from the PPBE) to the realized draw of ζt. As Lemma 4 makes clear, the role of ψ is to specify
off-path beliefs and play. By definition, ψ

`

hdt
˘

“ hdt if and only if md
τ P supp λ

`

d´1
`

hdτ´1

˘˘

for all τ ď t´ 1. In other words, the set on which ψ
`

hdτ
˘

“ hdτ for all τ ď t is exactly d pHtq.

To see ψ is measurable, we may again proceed inductively. Suppose ψ
`

hdτ
˘

is measurable
for all τ ď t´ 1 (this is clear for t “ 2). Then by the usual composition rule, λ

`

d´1
`

ψ
`

hdτ
˘˘˘

is a measurable function of hdτ . Along with a similar construction for ρ, these functions induce
a measure P1 on Hd

t .
53 As the above discussion makes clear, d pHtq is the support of this

distribution and hence a Borel set, for each t. But ψ is an identity map on d pHtq and,
given measurability of µ and f´1, is a measurable function of history on d pHtq

c . Hence by
induction, ψ is measurable. We can now replicate a PPBE of the original game with a DE:

Lemma 4 For any public PBE, there exists a corresponding DE which induces the same
marginal distributions over pθt, at, ωtq, @t.

Proof : We construct a DE with the required properties. For the sender’s strategy, put
λd “ λ ˝ d´1 ˝ ψ , for the receiver’s strategy, ρd “ ρ

`

d´1
`

ψ
`

hdt
˘˘

, f´1 pζtq
˘

and for beliefs,
µd “ µ

`

d´1
`

ψ
`

hdt
˘˘

, f´1 pζtq
˘

.54 These functions correspond in an obvious way to mappings
of the form λd : Hd Ñ ∆∆Θ, ρd : Hd ˆ ∆Θ ˆ r0, 1s Ñ ∆A, µd : Hd ˆ ∆Θ ˆ r0, 1s Ñ ∆Θ.
Moreover, by the usual composition rule all these maps are measurable. Endow ζt with the

51By the π ´ λ theorem, we need only see that d´1 maps measurable rectangles in Hd into Borel
sets. Letting Hd

t Ă Hd
t be such a rectangle, this is clear for Hd

1 and extends by induction to Hd
t , t ą 1.

52If σ induces λ without full support at ht, there ism
d P ∆Θ such that

`

d phtq ,m
d, ζt, at, ωt

˘

R d pHq.
53Strictly, we must also define a process for ζt; we use the one defined in the proof of Lemma 4.
54The careful reader may worry that ρd and µd depend on ζt rather than md

t . However—by the
definition of ϕ below—messagemd

t induces only values of ζt consistent with thosemt inducing posterior
md

t in the PPBE, so the receiver’s beliefs are exactly pinned down by the sender’s message.
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conditional distribution ϕ : Hd ˆ ∆Θ Ñ ∆ r0, 1s where for any Borel Ŷ Ď r0, 1s:

ϕ
´

Ŷ
ˇ

ˇ hdt ,m
d
t

¯

“

$

&

%

φ
´

Ŷ
ˇ

ˇ hdt ,m
d
t

¯

, if md
t P supp λd

`

hdt
˘

,

φ̄
´

Ŷ
ˇ

ˇ hdt

¯

, otherwise.

By pinning down the evolution of ζt we complete the description of a stochastic process for hdt .
In particular,

〈
λd, ρd, ϕ

〉
induces a distribution over Hd; call it Q⟨λd,ρd,ϕ⟩. With the mapping

between PBE and DE, it is easy to verify that for any Borel subsets M̂ Ď M , Â Ď A, θ P Θ,
ω P Ω and t, the distributions Q, P satisfy

P⟨σ,ρ⟩

”

θt “ θ,mt P M̂, at P Â, ωt “ ω
ı

“ Q⟨λd,ρd,ϕ⟩
”

θt “ θ, ζt P f
´

M̂
¯

, at P Â, ωt “ ω
ı

.

For M̂ “ M , this reduces to P⟨σ,ρ⟩

”

θt “ θ, at P Â, ωt “ ω
ı

“ Q⟨λd,ρd,ϕ⟩
”

θt “ θ, at P Â, ωt “ ω
ı

.

In other words, Q and P agree on all the measurable rectangles in Θ ˆ A ˆ Ω. Hence, by
Dynkin’s π ´ λ theorem, they agree on every Borel subset of Θ ˆ A ˆ Ω, establishing that〈
λd, ρd, ϕ

〉
and ⟨σ, ρ⟩ induce the same distribution over pθt, at, ωtq, for all t.

Last, we verify
〈
λd, ρd, µd

〉
supported by the p.r.d. ζt constitutes a DE. Since

〈
λd, ρd, µd, ϕ

〉
and ⟨σ, ρ⟩ induce identical distributions over pθt, at, ωtq, the sender’s payoff from using λd is
exactly the same as under ⟨σ, ρ⟩. Moreover, it is easy to see that, by construction, he has the
same set of deviations (up to relabelling) in the DE as in PBE. Hence, λd satisfies condition
4. By definition of µd it is clear that for any hdt P d pHq, md

t P supp λd
`

hdt
˘

, µdphdt ,m
d
t q “

µ
`

d´1
`

ψ
`

hdt
˘˘

, f´1 pζtq
˘

“ µ
`

d´1
`

hdt
˘

, f´1 pζtq
˘

“ µ pht,mtq “ md
t , where the last equality

follows from the final part of the proof of Lemma 3. That is, condition 7 is satisfied. Condition
6 follows by a change of variables applied to 3, using md

t “ µ pht,mtq “ µdphdt ,m
d
t q and

the associated change of measures (5). Finally, it is obvious that ρd satisfies condition 5,
given that (i) md

t “ µ pht,mtq for md
t P supp λd

`

hdt
˘

and ρ obeys condition 2, and (ii) for
md

t R supp λdphdt q,
`

µd, ρd
˘

replicate those at some PPBE history. l

Conversely, the following Lemma closes the equivalence between PBE and DE:

Lemma 5 For any DE
〈
λd, ρd, µd

〉
, there exists a PBE ⟨σ, ρ, µ⟩ of the game with message

space M which induces the same marginal distributions over pθt, at, ωtq, @t.

If the sender’s message space were ∆Θ, Lemma 5 would be an easy extension of KG, so
we omit the details.55 Since M is Polish and uncountable, there is a measurable, one-to-one
map between M and ∆Θ from which relabeling the result follows. l

55Following KG, it is trivial to construct (state-dependent) strategies which induce the desired
information structures. The only additional step here is to verify the strategy is measurable, which
follows straightforwardly from another application of Theorem 44.3, Bauer (2011).
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Proposition 1

We will show that Epµ0, δq is identical to the set of Perfect Public Equilibrium (PPE) payoffs
in a repeated simultaneous-move game, to which the recursive tools of Mailath and Samuelson
(2006) (MS, hereafter) can be applied; Proposition 1 will follow accordingly. To do that, we
first show it is without loss to focus on DE in which at each history, strategies induce finite mix-

tures over messages or actions. Given a sequence paτ , θτ q8
τ“1, let V “ p1´δq

8
ř

τ“1
δτ´1v paτ q, and

denote by Vλ,ρ

`

hdt
˘

“ E
“

V | hdt
‰

the sender’s conditional expected payoff (given history hdt )
induced by profile xλ, ρy, and by Vθtphdt ,m

d
t q the corresponding expectation given phdt , θt,m

d
t q.

Analogously, define U “ p1 ´ δq
8
ř

τ“1
δτ´1u pθτ , aτ q, Uλ,ρ

`

hdt
˘

“ E
“

U | hdt
‰

and Uphdt ,m
d
t q.

Lemma 6 For any DE
〈
λd, ρd, µd

〉
, there is another, xλ̃d, ρ̃d, µ̃dy, in which (1.) |supp λ̃d

`

hdt
˘

|
ď N ` 1, @hdt P Hd, (2.) |supp ρ̃d

`

hdt ,m
d
t , ζt

˘

| ď N ` 2, @
`

hdt ,m
d
t , ζt

˘

P Hd ˆ∆Θˆ r0, 1s, and
(3.) Vλd,ρd

`

hd1
˘

“ Vλ̃d,ρ̃d

`

hd1
˘

and Uλd,ρd
`

hd1
˘

“ Uλ̃d,ρ̃d

`

hd1
˘

.

Proof : As a first step, we show that for any h P Hd and corresponding λd phq, there exists
an alternate BP information structure λ1

h with three properties: (i) supp λ1
h Ă supp λd phq;

(ii) | supp λ1
h |ď N ` 1; and (iii) V phq, U phq are unchanged if λd is adjusted by replacing

λd phq with λ1
h at h only. As λd phq is BP, it follows from Rubin and Wesler (1958) that

pµ0,Vphq,Uphqq P co pXhq, where Xh “ tpmd, u, vq : u “ Exλd,ρdy

“

U | h,md
‰

, v “ Exλd,ρdyrV |

h,mds,md P supp λd phqu. Hence, there exists a finite subset t
`

md
s , us, vs

˘

uks“1 Ă Xh and
corresponding (probability) weights pλsqks“1—which may both depend on h—satisfying BP and
(iii). Existence of a BP λ1

h satisfying (i)-(iii) then follows from Carathéodory’s Theorem.56

By an almost identical argument, for each ph,mdq there exists a correlating distribution
α1
h,md over at most N ` 2 realizations tζsu

N`2
s“1 of the p.r.d., and for each ζs, a distribu-

tion ρ1
h,md,ζs

over A with supp ρ1
h,md,ζs

Ă ρdph,md, ζq and |supp ρ1
h,md,ζs

| ď N ` 2, such that

U
`

h,md
˘

and Vθ
`

h,md
˘

, θ P Θ, are unchanged if uniform randomization over ζ is replaced by
the distribution α1

h,md at ph,mdq, and ρd is replaced with ρ1
h,md,ζs

at ph,md, ζsq.57 To see this,

letXph,mdq “ tpu, pvθqθq : Dζ P r0, 1s and a P supp ρdph,md, ζq s.t. u “ E
“

U | h,md, ζ, a
‰

and

vθ “ E
“

V | h, θ,md, ζ, a
‰

,@θ P Θu. Applying Rubin and Wesler (1958) and Carathéodory’s
Theorem to Xph,mdq in a manner similar to the last paragraph, the claim follows.

Given these observations, we now construct a sequence of (measurable) auxiliary functions
λ̃dt : Hd Ñ ∆∆Θ, ρ̃dt : Hd ˆ ∆Θ Ñ ∆A, t “ 1, 2, . . . , each measurable. Set λ̃d1 such that
λ̃d1

`

hd1
˘

“ λ1

hd
1
, and λ̃d1 phq “ λd phq for all h P Hdzthd1u, and treat ρ̃d1 similarly. For t ą 1,

56Carathéodory’s Theorem alone reduces the support to at most N`2-points; we show in a previous
version (available on request) that the sender’s incentive compatibility allows a further reduction by 1.

57When we say that uniform randomization is ‘replaced’ with some such correlating distribution α1,
we have only in mind that α1 is constructed from the underlying p.r.d. as follows: divide r0, 1s into
N ` 2 subintervals, each identified with a distinct member ζs of tζsu

N`2
s“1 and having length α1pζsq.

Continuation play is conditioned on the subinterval ζs into which ζ falls in the way described by λd

and ρd thereafter. See Remark 7.5.1, MS, where the same idea is discussed.
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inductively define:

λ̃dt phq “

$

’

&

’

%

λ̃dτ phq , for h P supp P̃t´1
τ , τ ă t,

λ1
h, for h P supp P̃t´1

t ,

λdτ phq , for h P supp P̃t´1
τ , τ ą t.

ρ̃dt
`

h,md
˘

“

$

’

&

’

%

ρ̃dτ
`

h,md
˘

, for ph,md
t q P supp Q̃t´1

τ , τ ă t,

ρ1
h,md , for ph,mdq P supp Q̃t´1

t ,

ρdτ
`

h,md
˘

, for ph,mdq P supp Q̃t´1
τ , τ ą t.

where P̃t´1
τ (respectively, Q̃t´1

τ ) is the distribution over Hd
τ (Hd

τ ˆ∆Θ) induced by xλ̃dt´1, ρ̃
d
t´1y

(xλ̃dt , ρ̃
d
t´1y). We treat ζ in a similar fashion, inductively replacing uniform randomization

with the correlating distribution α1
h,md—but leave this step implicit. With its construction

understood, the correlating device plays little further role in the remainder of the proof and
so we suppress it hereafter. λ̃dt adjusts λd only for τ ă t, replacing its information structures
with ones that always have at most an N `1-point support; similarly, ρ̃dt ensures finite mixing
by the receiver up to t. With such strategies, the set of time t-histories can be treated as
finite.58 Moreover, by construction, Vλd,ρd

`

hd1
˘

“ Vλ̃d
t ,ρ̃

d
t

`

hd1
˘

and Uλd,ρd
`

hd1
˘

“ Uλ̃d
t ,ρ̃

d
t

`

hd1
˘

,

for all t. Taking t Ñ 8, these auxiliary functions define strategies λ̃d : Hd Ñ ∆∆Θ and ρ̃d :
Hd ˆ∆Θ Ñ ∆A such that λ̃dphdt q “ λ1

hd
t
, ρ̃dphdt ,m

d
t q “ ρ1

hd
t ,m

d
t
for all t. These direct strategies

obviously satisfy properties (1.) and (2.) of the lemma. Moreover, due to discounting, it is
easy to see Vλd,ρd

`

hd1
˘

“ Vλ̃d,ρ̃d

`

hd1
˘

and Uλd,ρd
`

hd1
˘

“ Uλ̃d,ρ̃d

`

hd1
˘

, so property (3.) holds.

For beliefs, set µ̃dphdt ,m
d
t q “ md

t for all phdt ,m
d
t q induced with positive probability under

xλ̃d, ρ̃dy.59 Verifying equilibrium is simple: the receiver clearly still best responds given beliefs,
and from KG, each λ1 can be constructed to obey condition 6 for all h. Lastly, we verify
condition 4. Note, the one-shot deviation principle applies to DE.60 Hence, we need only

show that the sender has no profitable one-shot deviation in
〈
λ̃d, ρ̃d, µ̃d

〉
. Suppose there

were a profitable one-shot deviation at some history ph, θq. Since deviating to a message
m R λ̃dphq cannot be profitable (see footnote 58), there must be some m1 P supp λ̃dphq such
that Vθ

λ̃d,ρ̃d
ph,m1q ą Vθ

λ̃d,ρ̃d
phq, where Vθ

λ̃d,ρ̃d
phq is his conditional expected payoff from playing

according to λ̃dp¨ | h, θq. But Vθ
λd,ρd

ph,m1q “ Vθ
λ̃d,ρ̃d

ph,m1q and moreover Vθ
λd,ρd

phq “ Vθ
λ̃d,ρ̃d

phq

hold by construction, which implies Vθ
λd,ρd

ph,m1q ą Vθ
λd,ρd

phq. This means we have found a

profitable one-shot deviation in the DE
〈
λd, ρd, µd

〉
—a contradiction. l

Lemma 6 allows us to considerM finite (up to relabeling) and Hd countable, since nothing
would be gained by considering equilibria in which strategies depend on deviations from ρd.
Perhaps also obvious—but useful in what follows—the set of payoffs remains unchanged if
we further consider only DE in which behavior strategies (and beliefs) never depend on the
history of receiver actions at “ paτ q

t´1
τ“1 at all. We show this in the next paragraph, leaning

58While we are not explicit about λ̃t, ρ̃t for off-path histories, we implicitly ‘complete’ the description
of these direct strategies with ψ, exactly as in the proof of Lemma 4.

59Consistent with footnote 58, beliefs ‘off-path’ are dealt with as in proof of Lemma 4.
60Strategies are public and condition 4 holds for all hdt . See pg. 231, Mailath and Samuelson (2006).
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on the following simple observation: beyond its effect on continuation play, the labeling of the
p.r.d. is clearly irrelevant. Given an equilibrium, we may therefore identify the p.r.d. with a
‘public correlating device’ (p.c.d.), a collection of discrete random variables whose realizations
and distributions may depend on phdt ,m

d
t q.61 With a notational abuse, we may denote a

p.c.d. ζ “ tζtu
8
t“1, understanding that ζt’s realizations may not live in r0, 1s. Maintaining

that understanding, we write hdt “ pmd
τ , ζτ , aτ , ωτ q

t´1
τ“1 and say hdt is augmented by p.c.d. ζ. If

λd, ρd, µd can be written as functions of such histories, we say p.c.d. ζ supports
〈
λd, ρd, µd

〉
.

Fix some DE
〈
λd, ρd, µd

〉
satisfying conditions (1.)-(3.) of Lemma 6, supported by a p.c.d.

ζ whose realizations ζt live in t1, . . . , N ` 2u according to a conditional distribution α : Hd ˆ

∆Θ Ñ ∆t1, . . . , N ` 2u. We specify a new DE xλ̂d, ρ̂d, µ̂dy supported by a p.c.d. ζ̂, in which
(i) strategies and beliefs do not depend on at at any time t, and (ii) payoffs are unchanged.
Define ζ̂t as follows: for each phdt ,m

d
t q, let ζ̂t P t1, . . . , N `2u ˆ

ŤN`2
ζt“1 supp ρ

dphdt ,m
d
t , ζtq, with

distribution α̂ defined by α̂pi, a | hdt ,m
d
t q “ αpi | hdt ,m

d
t q ¨ ρd

`

a | hdt ,m
d
t , ζt “ i

˘

. Notice ζ̂t
mimics the joint distribution of pζt, atq induced by DE

〈
λd, ρd, µd

〉
. Next, map histories ĥdt

(augmented by ζ̂) to those augmented by ζ as follows: for ĥdt “
`

md
τ , ζ̂τ “ piτ , âτ q, aτ

˘t´1

τ“1
, set

hdt pĥdt q “ pmd
τ , ζτ “ iτ , âτ q8

τ“1. Pick λ̂
dpĥdt q “ λdphdt pĥdt qq, ρ̂dpat “ ât | ĥdt ,m

d
t , ζ̂t “ pit, âtqq “ 1

and µ̂dpĥdt ,m
d
t , ζ̂t “ pit, âtqq “ µdphdt pĥdt q,md

t , itq. Trivially, xλ̂d, ρ̂d, µ̂dy is a DE supported by
ζ̂, with

`

Uλ̂d,ρ̂dpĥd1q,Vλ̂d,ρ̂dpĥd1q
˘

“
`

Uλd,ρdphd1q,Vλd,ρdphd1q
˘

. Notice also that if two histories ĥdt ,

ĥd,1t differ only in at, they map to the same hdt . Hence, λ̂
d, ρ̃d are independent of past actions.

Another application of the argument in Lemma 6 reduces the support of each ζ̂t appropriately.

Given these observations, we may now turn to the properties of Epδq.62 We show that the
set of PPBE payoffs in the game of section 1 , denoted G, coincides with the set of payoffs
arising from the PPE (pg.231 in MS) of a repeated game GMS to which standard recursive
tools apply. The implications for Epδq follow from Lemma 1.

Without loss of generality, normalize vpaq P r0, 1s for all a P A.63 Define the repeated game
GMS as follows: a long-lived S plays a sequence of simultaneous-move stage games against
short-lived R. A pure action for S is a choice of profile m P MΘ, where M is finite and mθ

denotes the message sent if the state is θ, where θ is distributed according to µ0; we may write
m “ pmθ,m´θq with the obvious meaning, and m´1pmq :“ tθ : mθ “ mu. An action for R

is a choice ϱ P A :“
`

∆N`2pAq
˘M

, where ∆N`2pAq denotes the set of distributions on A with
at most N ` 2-point support. For each m P M , ϱ specifies a distribution ϱm supported at
most N ` 2 members of A, where ϱmpaq denotes the probability a is realized, given m. At the
end of the stage, ω is generated according to pp¨ | θ, aq, where ppω | θ, a ‰ a1q “ ppω | θq and
ppH | θ, a “ a1q “ 1. Also, we allow for a random variable z P t0, 1u, where Pr rz “ 1 | as “

vpaq. The realizations of θ, ω and play of the stage game induce a public signal y P Y , where
y “

`

mθ, ω, z
˘

and Y “ M ˆ Ω ˆ t0, 1u. The conditional distribution of y given m and ϱ is

πpy “ pm,ω, zq | m, ϱq :“
ÿ

m´1pmq

µ0,θ
ÿ

supp ϱm

ϱmpaqppω | θ, aqvpaqz
`

1 ´ vpaq
˘1´z

61The identification is similar in manner to that in footnote 57.
62As µ0 remains constant in our arguments here, we suppress the dependence of E on it.
63This only eases description of the distribution of z, below. If v were not normalized in this way,

Lemma 7 below carries over upon taking the obvious cardinal transformation.
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if m´1pmq ‰ H and 0 otherwise. The sender’s ex post stage payoff υS : Y ˆ MΘ Ñ R
is υSpy,mq “ z. Note that, conditional on the realization a, E rz | as “ vpaq, so that S’s
preferences over a are identical to those in section 1. We introduce z to ensure that Y is
finite, and yet S’s payoffs depend at most on y and his own action—as per Chapter 7.1,
MS.64 As we will see, it plays no further role in the analysis. The receiver’s ex post payoffs
υR : Y ˆ A ˆ Θ Ñ R are

υRpy, ϱ, θq “
ÿ

supp ϱm

ϱmpaqupθ, aq.

We allow R’s payoffs to depend on the stage game parameter θ, and unlike Assumption 7.1.1,
MS, we do not make any quasi-concavity assumptions on υRpy, ϱ, θq; as we will see (proof of
Lemma 8), this has no consequence for applying the results of chapter 7, MS, to GMS .

The stage game is played repeatedly, with pθt, ωtq drawn i.i.d. across periods. We allow
for a p.r.d. ζ “ tζtu

8
t“1 where each ζt „ U r0, 1s is publicly observed before play of the period-

t stage; a period-t public history ht sets h1 “ H, for t “ 1, and is otherwise a sequence
ht “ pζτ , yτ q

t´1
τ“1; players publicly observe pht, ζtq at the tth stage game. It is convenient

to write H for the set of public histories. A public (behavior) strategy for S is a mapping
ς : H ˆ r0, 1s Ñ ∆

`

MΘ
˘

, where ςpm | htq has the obvious meaning. With slight notational
abuse, we write R’s public behavior strategy ϱ : H ˆ r0, 1s Ñ A, where ϱmpa | ht, ζtq is the
obvious conditional probability; Uς,ϱphq, Vς,ϱphq for the expected discounted payoffs induced
by ⟨ς, ϱ⟩ at h; and, Uσ,ρphq, Vσ,ρphq for xσ, ρy in G. The set of PPE payoffs in GMS is

EMS pδq :“

#

pu, vq : D a PPE ⟨ς, ϱ⟩ of GMS s.t. u “ Uς,ϱph1q, v “ Vς,ϱph1q

+

. (8)

Notice it is without loss in EMSpδq to consider PPE in which ς and ϱ do not depend on the
history zt “ pz1, . . . , zt´1q. The argument is similar to that following Lemma 6. As such,
we omit the details, noting only that, fixing any PPE one can (a) again use Caratheodory’s
Theorem to identify the p.r.d. with a p.c.d. ζ supported on t1, . . . , N ` 2u, and (b) define a
p.c.d. ζ̂ such that ζ̂t mimics pzt´1, ζtq, on which the required coordination can be replicated
without the need for strategies to condition on zt. Accordingly, in both GMS and G we
can consider the domain of strategies (and beliefs) to be H ˆ t1, . . . , N ` 2u, where H “
Ť8

t“1

`

t1, . . . , N ` 2u ˆM ˆ Ω
˘t
.65

Lemma 7 Epδq “ EMSpδq.

Proof : Fix pu, vq P EMSpδq, and some PPE ⟨ς, ϱ⟩ such that pu, vq “ pUς,ϱph1q,Vς,ϱph1qq.
We construct a PPBE ⟨σ, ρ, µ⟩ of G for which pUσ,ρph1q,Vσ,ρph1qq “ pu, vq; hence, pu, vq P Epδq

(Lemma 1). The converse direction is simpler (as there is no need to identify consistent beliefs

64Omitting a from y avoids having to deal with sequential compactness issues (A may not be finite).
65By specifying histories of G this way, we are implicitly advancing the p.r.d. ahead of the sender’s

move. This serves to avoid notational clutter mapping histories between G and GMS . It has no other
consequence: players in G can always use pζ0, . . . , ζt´1q to replicate the coordinating role of pζ1, . . . , ζtq
in GMS . Conversely, the receiver in G gets an additional signal after mt. As she leaves the game
immediately, this turns out to be redundant. In a PPBE, she is indifferent across all equilibrium
actions. So if she conditions play on ζt, there is a payoff-equivalent PPBE in which she does not.
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for a replicating PPE), so we omit it. In what follows, play across the equilibria below depends
identically on ζ, so we suppress it to avoid notational clutter.

For each ph, θ,mq P H ˆ Θ ˆ M , choose σ pm | h, θq “
ř

m´θPMΘztθu ς
`

m,m´θ | h
˘

. For

m P supp
Ť

Θ σph, θq, choose ρpa | h,mq “ ϱmpa | hq and µθph,mq “
µ0,θσpm|h,θq

ř

θ1PΘ µ0,θ1σpm|h,θ1q
.

Otherwise, put ρpa | h,mq “ a and µθph,mq “ µa, where a and µa are arbitrary selections
from argminAvpaq and tµ : a P argmaxA

ř

µθupθ, ãqu, which we note are non-empty.

⟨σ, ρ⟩ and ⟨ς, ϱ⟩ induce identical distributions over H. To see this, proceed by induction.
Clearly, P⟨σ,ρ⟩ rh1s “ P⟨ς,ϱ⟩ rh1s. Suppose Pσ,ρ rhts “ Pς,ϱ rhts for all ht P Ht. Then,

Pσ,ρ

“

ht`1

‰

“ Pσ,ρ rhts ¨ Pσ,ρ rmt, ωt | hts
“ Pσ,ρ rhts

ř

Θ µ0,θσpmt | ht, θq
ř

supp ρpht,mtq

ρpa | ht,mtqppωt | θ, aq

“ Pς,ϱ rhts
ř

Θ

ř

MΘztθu

µ0,θς
`

pmt,m´θq | ht, θ
˘

ř

supp ϱmt phtq

ϱmtpa | htqppωt | θ, aq

“ Pς,ϱ

“

ht`1

‰

.

Moreover, note that Eρph,mq rvpaqs ď Eϱmphq rvpaqs “ Eϱmphq rzs for all ph,mq, with equality
for m P supp

Ť

Θ σph, θq. Therefore, for any ht P H the continuations V satisfy

Vσ,ρphtq “ p1 ´ δq
8
ř

τ“t
δτ´tPσ,ρ rhτ | hts

ř

Θ

µ0,θ
ř

M

σpm | hτ ,mqEρphτ ,mq rvpaqs

“ p1 ´ δq
8
ř

τ“t
δτ´tPς,ϱ rhτ | hts

ř

Θ

µ0,θ
ř

MΘ

ςpm | hτ ,mθqEϱmθ
phτ q rzs

“ Vς,ϱphtq,

(9)

Similarly, note that for receivers Eσ,ρ rE rupθ, aq | ht,ms | hts “
ř

M Pσ rm | hts
ř

Θ µθpht,mq

Eρpht,mq rupθ, aqs “
ř

Θ µ0,θ
ř

M σpm | ht, θqEρpht,mq rupθ, aqs “
ř

Θ µ0,θ
ř

MΘ ςpm | ht, θq

Eϱmθ
rupθ, aqs “ Eς,ϱ rupθ, aq | hts. From here, steps similar to those in equation (9) show

Uσ,ρphtq “ Uς,ϱphtq, establishing that pUσ,ρph1q,Vσ,ρph1qq “ pu, vq.

We now verify that ⟨σ, ρ, µ⟩ constitutes a PPBE of G. By construction, µ is derived
from Bayes rule whenever Prσrm | hs ą 0, so satisfies condition 3. Now consider condition
2, and notice that it is trivially satisfied for any ph,mq such that m R supp

Ť

Θ σph, θq by
the definition of µa. Suppose for the sake of a contradiction that 2 were violated for some
ph,mq such that m P supp

Ť

Θ σph, θq. Then, there exists some deviation ã P A such that
ř

Θ µθph,mqupθ, ãq ą
ř

Θ µθph,mqEρph,mq rupθ, aqs. Now consider the deviation ϱ1 in GMS ,
which assigns ϱ1

mpã | hq “ 1 and equals ϱ otherwise. Steps similar to those above show

Eς,ϱ1 rupθ, aq | hs “ Eς,ϱ rupθ, aq | hs ` Prσ rm | hs
ř

Θ µθph,mq
`

upθ, ãq ´ Eρph,mq rupθ, aqs
˘

,

where the final term is strictly positive because Prσ rm | hs ą 0 for m P supp
Ť

Θ σph, θq. But
then ϱ1 is a strictly profitable deviation for the receiver in the PPE xς, ϱy—a contradiction.

Finally, consider condition 1. For the sake of a contradiction, suppose there is a σ1 : H Ñ R
and some ht such that Vσ1,ρphtq ą Vσ,ρphtq. Define ς 1 : H Ñ R by

ς 1pm | hq “
ź

θPΘ

σ1
`

mθ | h, θ
˘

,
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and observe that σ1 pm | h, θq “
ř

MΘztθu ς 1
`

pm,m´θq | h
˘

. Hence, by the argument above,
Pσ1,ρ rhs “ Pς 1,ϱ rhs, and so

Vς 1,ϱphtq “ p1 ´ δq
8
ř

τ“t
δτ´tPς 1,ϱ rhτ | hts

ř

Θ

µ0,θ
ř

MΘ

ς 1pm | hτ ,mθqEϱmθ
phτ q rvpaqs

ě p1 ´ δq
8
ř

τ“t
δτ´tPσ1,ρ rhτ | hts

ř

Θ

µ0,θ
ř

M

σ1pm | hτ ,mqEρphτ ,mq rvpaqs

“ Vσ1,ρphtq.

(10)

Since the last line exceeds Vσ,ρphtq “ Vς,ϱphtq, ς
1 must be a profitable deviation from ς, so

⟨ς, ϱ⟩ is not a PPE—a contradiction. l

We can now complete the proof of Proposition 1:

Lemma 8 Epδq is compact, convex, and increasing in δ (in the set inclusion order)

Proof : We argue that the recursive analysis of chapter 7, MS, applies to GMS , and so
EMSpδq has the desired properties; this extends to Epδq by Lemma 7. In particular, GMS has
the following features: 1) the set of public signals Y and the sender’s ‘action’ space MΘ are
finite; 2) A is both compact and sequentially compact (note, A can be identified with a closed
subset of a finite product pAN`2 ˆ r0, 1s

N`2
qM of compact, metrizable spaces); 3) expected

stage payoffs υS‹pς, ϱq “ E⟨ς,ϱ⟩
“

υSpy,aq
‰

and υR‹pς, ϱq “ E⟨ς,ϱ⟩
“

υRpy, θ,aq
‰

are continuous in

pς, ϱq, where we (briefly) use ς P ∆pMΘq and ϱ P A to denote (mixed) actions. Hence, the
recursive payoffs W i : ∆MΘ ˆAˆRY , i “ S,R, defined by W i “ p1´ δqυi˚pς, ϱq ` δE

“

γipyq
‰

are also continuous, where γi : Y Ñ R denotes a promised (y-dependent) continuation payoff
to i (cf. Definition 7.3.1, MS). Continuity of υR˚ and compactness of A imply—by the
Theorem of the Maximum and the Closed Graph Theorem—that the receiver’s best-response
correspondence B : ∆pMΘq ↠ A is non-empty valued, and its graph B is closed. Moreover,
as ∆pMΘq ˆ A is compact and metrizable, B is both compact and sequentially compact.

Given these features, the proof of Proposition 7.3.1, MS, applies to the PPE of GMS

without change. In particular, as H is countable, the strategies derived from iterated de-
composition are trivially measurable. Moreover, as W i, i “ S,R, are continuous, and B is
sequentially compact, Proposition 7.3.2, Lemmas 7.3.1 and 7.3.2, and Proposition 7.3.3 also
carry over. Hence Corollary 7.3.1 applies, so that EMSpδq is compact. As we allow for a p.r.d.,
Corollary 7.3.2 applies, so that EMS is convex and increasing in δ. l

Appendix B: Proofs of Main Results

Theorem 1

We first show Vdepµ0q “ Vkgpµ0q if and only if Vkgpµ0q “ Vpartpµ0q. The ‘if’ direction is trivial,
as Vpartpµ0q ď Vdepµ0q ď Vkgpµ0q always holds (see Lemma 11). For the converse, we use the
following well-understood property of Vkg:
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Lemma 9 Fix µ0 P ∆Θ. Let λkg solve (KG) and denote supp λkg “ tµ‹,kuKk“1. For any

µ “
řK

k“1 α
kµ‹,k, where αk ě 0, k “ 1, . . . ,K, and

řK
k“1 αk “ 1,

Vkgpµq “

K
ÿ

k“1

αkvpµ‹,kq. (11)

Proof : By definition, Vkgpµq ě
řK

k“1 α
kvpµ‹,kq. Towards a contradiction, suppose the in-

equality is strict for some µ P co tµ‹,kuKk“1. As λkgk :“ λkgpµ‹,kq ą 0 for all k, there is a
µ1 P co tµ‹,kuKk“1 and γ P p0, 1q such that µ0 “ γµ` p1 ´ γqµ1 (see footnote 66). Then

γVkgpµq`p1´γqVkgpµ1q ą γ
K
ÿ

k“1

αkVkgpµ‹,kq`p1´γq

K
ÿ

k“1

βkVkgpµ‹,kq “

K
ÿ

k“1

λkgpµ‹,kqVkgpµ‹,kq,

where tβkuKk“1 denotes convex weights associated with µ1, chosen to satisfy λkgk “ γαk ` p1 ´

γqβk for all k.66 The RHS of this chain is at least Vkgpµ0q, contradicting concavity of Vkg. l

We now prove that Vdepµ0q “ Vkgpµ0q implies Vkgpµ0q “ Vpartpµ0q. If Vdepµ0q “ Vkgpµ0q,
then from (CP) there must exist some λkg P Λkgpµ0q such that cpλkgq “ 0. This implies
that either (i) λkg is partitional, or (ii) λkg is not partitional and, for every θ P Θ and
µ P Bθ :“ supp λkgp¨ | θq, vpµq “ vθpλkgq.67 Obviously we need only consider case (ii). Fix
some θ P Θ for which Bθ is not a singleton. By Lemma 9, Vkgpµq “ vθpλkgq for all µ P co Bθ.
Furthermore, as vpµq is constant on Bθ, the information structures in (11) can be supported
as one-shot cheap talk equilibria and so Vctpµq “ Vkgpµq for all µ P co Bθ. Under Assumption
1, this implies vpµq “ vθ for all µ P co Bθ.

As payoffs are constant on Bθ, each θ can be identified with a unique payoff vθ. Index
these payoffs by i (a small but useful abuse of notation: i need not take consecutive integer
values here), partition Θ according to these payoffs—that is, let θ, θ1 P Pi if and only if
vθ “ vθ1 “ i—and notice that for every θ P Pi and µ P Bθ we have supp µ Ă Pi (since a µ with
vpµq “ i is induced with positive probability only if θ P Pi). As a result, it is easy to see that
the conditional expectation Erµ | µ P

Ť

Pi
Bθs satisfies Erµ | µ P

Ť

Pi
Bθs “ Erµ | θ P Pis “ µi

(recall µi is the posterior associated with learning θ P Pi). Consider the information structure
λ1 which adjusts λkg by pooling posteriors µ P

Ť

Pi
Bθ into the single posterior µi. By the above

reasoning, λ1 is obviously partitional. Moreover, since vpµq “ i for all µ P
Ť

Pi
Bθ, the previous

paragraph shows vpµiq “ i too and so we have vpλ1q “ vpλkgq. Hence, Vpartpµ0q “ Vkgpµ0q.

We now show that Vdepµ0q “ Vkgpµ0q holds for all priors if and only if Vpart is concave. Of
course, if Vdepµq “ Vkgpµq holds for all µ then the first part of the theorem implies Vpart inherits
the concavity of Vkg. To prove the other direction, we make use of two simple observations:

Lemma 10 Consider two real functions f , g on ∆Θ. If f ě g everywhere, then cav f ě cav g.

Lemma 10 is a well-known property of concave envelopes. Hence we omit the proof.

66Choose βk :“ λkgk ´ εpαk ´λkgk q, for ε “
γ

1´γ ą 0 small. Note µ1 “
řK

k“1 β
kµ‹,k and

řK
k“1 β

k “ 1.
67By definition, cpλkgq “

ř

θPΘ

řK
µPsupp λkg µ0,θλ

kgpµ | θqpvpµq ´ vθpλkgqq and vpµq ´ vθpλkgq ě 0

for all µ P supp λkgp¨ | θq. Thus, cpλkgq “ 0 implies vpµq ´ vθpλkgq “ 0 for all θ P Θ and µ P Bθ. When
|Bθ| “ 1, @θ P Θ, λkg is partitional and this condition trivially applies. Otherwise, case (ii) applies.
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Lemma 11 v ď Vpart ď Vde ď Vkg everywhere on ∆Θ.

Proof : The first inequality follows because ‘no information’ is a partitional information
structure, the second from (CP) and cpλPpµ0qq “ 0 for partitional information structures,
and the third by direct comparison of (CP) and (KG). l

We can now prove the final part of the theorem. Suppose that Vpart is concave. Then
Vpart “ cav Vpart. Lemmas 10 and 11 imply cav Vpart “ Vkg, so Vpart “ Vkg. By Lemma 11,
Vde “ Vkg everywhere. l

Proposition 3

Proof : Before proving the result, we provide a useful lemma. Recalling N “ |Θ|, ∆Θ can
obviously be identified with a subset of RN´1 for which µθ ě 0 and

ř

Θ µθ “ 1. Let L be the
Lebesgue measure on ∆Θ, and for a subset P Ă Θ define the vector µP0 by

µP0,θ “

#

µ0,θ
ř

θPP µ0,θ
, if θ P P

0 , otherwise.

Lemma 12 Suppose action set A is finite. For any partition P “ tPiu
k
i“1, µ0 satisfies L-a.e.:

(i) µ0 P int ∆Θ, and (ii) Dεµ0 ą 0 such that vpµq “ vpµPi
0 q for all |µ´µPi

0 | ă εµ0, i “ 1, . . . , k.

Proof : The sets Epθq :“ tµ0 P ∆Θ : µ0,θ “ 0u are each contained in N ´ 2 dimensional
hyperplanes in RN´1, so that LpEpθqq “ 0 and hence LpEq “ 0, where E “

Ť

ΘEpθq. For
any singleton subset P Ă Θ, conditionally strict preferences trivially imply (ii). To extend
this observation to all subsets P Ă Θ, take any pair a, ã P A and define the set of priors
Ipa, ã, P q :“ tµ0 P Ec : dupa, ãqTµP0 “ 0u for which a receiver would be indifferent between
a and ã after learning θ P P , where dupa, ãq “ pupθ, aq ´ upθ, ãqqθPΘ. Let P be an N ˆ N
matrix whose columns are indicators for members of P , and 0 otherwise. For µ0 P Ec,

dupa, ãqTµP0 “ 0 ðñ
`

P Tdupa, ãq
˘T
µ0 “ 0, and by conditional strictness P Tdupa, ãq ‰ 0.

The latter therefore imposes a linear restriction on µ0, so Ipa, ã, P q is contained in an N ´ 2
dimensional hyperplane in RN´1 and LpIpa, ã, P qq “ 0. As there are only finitely many
combinations pa, ã, P q, this immediately extends to LpIq “ 0, where I “

Ť

AˆAˆ2Θ Ipa, ã, P q.
Hence, LpIc X Ecq “ 1. Noting Ec “ int ∆Θ, the receiver’s best response to any partitional
information structure is strict on Ic and payoffs are continuous completes the argument. l

We can now prove the Proposition. Let the set F “ argmax v, and take Q “ pEYIqXF c.
From Lemma 12, we have LpQq “ 0. We show that Qc “ pEc X Icq Y F has the desired
properties. Obviously, if µ0 P F , then we are done. So take µ0 P QczF . Let P “ tP1, . . . , Pku

be an optimal partition at µ0. Recall µi “ µPi
0 and λi “ λPpµiq. For µ1, µ2 P ∆Θ, define

µ1
i, µ

2
i , λ

1
i, λ

2
i in the analogous way. Define J “ ti P t1, . . . , ku : µi P argmax vu, and for an

arbitrary subset B Ă t1, . . . , ku write λB “
ř

iPB λi. We show there exist µ1, µ2 and α P p0, 1q
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such that (i) αµ1 ` p1 ´ αqµ2 “ µ0, (ii) vpµ1
iq “ vpµiq for i P Jc and (iii) vpµ2q “ max v, with

vpµ2q ą vpµiq for some i with λ2
i ą 0. Given these properties, the chain

Vpartpµ0q “
řk

i“1 λivpµiq “ α
ř

i λ
1
ivpµiq ` p1 ´ αq

ř

i λ
2
i vpµiq

ă αvPpµ1q ` p1 ´ αqvpµ2q

ď αVpart pµ1q ` p1 ´ αqVpart pµ2q

(12)

is valid, and the result follows (Theorem 1). To do this, suppose first that J is nonempty. As
µ0 P Ec, λJ ą 0. Under Assumption 1, argmax v is convex.68 Hence, µ0 R F implies Jc is

nonempty and λJc ą 0. Choose µ1 “

ř

Jc λiµi

λJc
and let µ̃ “

ř

J λiµi

λJ
. We construct µ2 from µ1

and µ̃. Since µ0 P Ic, Dw̄ P p0, 1q such that wµ̃ ` p1 ´ wqµ1 P argmax v for w P pw̄, 1q. Take
w̃ P pmaxtw̄, λJu, 1q and set µ2 “ w̃µ̃ ` p1 ´ w̃qµ1. Now, for α “ 1 ´

λJ
w̃ P p0, 1q, (i) is easily

verified. For (ii), we argue that µ1
i “ µi for i P Jc. If θ R

Ť

Jc Pj then clearly the probability
µ1
θ of state θ under belief µ1 is 0 and so µ1

i,θ “ 0 “ µi,θ for any i P Jc. For any other θ, we have

µ1
i,θ “

Prµ1 ri,θs

Prµ1 ris “
pλi{λJc qµi,θ

λi{λJc
“ µi,θ. For (iii), recall that µ1

θ “ 0 for all θ P
Ť

J Pj , so for such

θ (i) reduces to p1 ´ αqµ2
θ “ µθ. Therefore p1 ´ αqλ2

J “ p1 ´ αq
ř

J

ř

Pi
µ2
θ “

ř

J

ř

Pi
µθ “ λJ .

But, by definition of α, λJ “ p1 ´ αqw̃. Hence, λ2
J “ w̃ ă 1, so λ2

Jc ą 0, which establishes
(iii). The proof for the empty-J case is similar, and so omitted. l

Proposition 4

(If ) By definition, Vpart ě vP , and by (i), vP ě v. Lemmas 10 and 11 then imply cav vP “ Vkg.
Hence if we show vP is concave, we will be done (Theorem 1). Consider points µ, µ1 and
µ2 “ αµ` p1´αqµ1. Let λ, λ1, λ2 be the information structures corresponding to P under the

respective priors, and write γj “
αλj

αλj ` p1 ´ αqλ1
j

. Then

vPpµ2
0q “

ř

j λ
2
jvpµ2

j q

“
ř

j

´

αλj ` p1 ´ αqλ1
j

¯

vpµ2
j q

ě
ř

j

´

αλj ` p1 ´ αqλ1
j

¯ ´

γjvpµjq ` p1 ´ γjqvpµ1
jq

¯

“ αvPpµq ` p1 ´ αqvPpµ1q,

where line 2 uses λ2
j “ αλj ` p1 ´ αqλ2

j , and line 3 uses µ2
j “ γjµj ` p1 ´ γjqµ

1
j and (ii). l

(Only if ) Suppose (i) is violated. Then there exists some µ such that vpµq ą vPpµq—
contradicting optimality of P. Similarly if (ii) is violated then there exists some j and µ P ∆Pj

such that Vkgpµq ą vpµq “ vPpµq since by definition v and vP coincide on ∆Pj . l

68Otherwise, there would be µ1, µ2 P argmax v and some α P p0, 1q such that µ “ αµ1 ` p1 ´ αqµ2 R

argmax v – an obvious violation of Assumption 1.
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Theorem 2

For any pu, vq P C, we will find an information structure λ‹ such that pupλ‹q, vpλ‹qq “ pu, vq,
and construct a sequence of simple badge systems xλε,Γε,Sε, βεy, patience levels δε, and
corresponding PBE xσ‹

ε , ρ
‹
ε, µ

‹
εy with the desired convergence properties as ε Ñ 0. To do this,

we first introduce the class of SBS with which we work, and the corresponding PBE concept.
We then provide two auxiliary results: a lemma that identifies λ‹ and establishes some of its
key properties, and a proposition on the existence of PBE with desirable properties. Using
these results, we are then able to construct the required sequence. To simplify exposition,
we first present the argument assuming that the receiver always takes actions in Azta1u; we
describe how the argument extends without this assumption at the end.

Definitions: Simple Badge Systems and Recursive PBE

We work with the simple badge systems defined in section 3.2, taking M to be finite, with
|M | “ 2N ` 2. As a result, we may identify Λpµ0q with an appropriate subset of R|M |pN`1q,
endowed with the Euclidean topology.69

Recall from section 3.2 that any SBS can be described by the length Γ of its evaluation
phases, the length β ˆ Γ of its suspension phases, and a set of standards, S. We work with a
class of SBS whose standards can be described by a ‘target’ information structure λ P Λpµ0q

and a ‘tolerance’ χ ą 0. Let h1
lphtq “ pθτ ,mτ , aτ , ωτ q

t´1
τ“t´l be the sub-component of the private

history ht formed from the most recent l ď t periods (h1
0 “ H); H1

l denotes the corresponding
set of such histories. Then, fixing λ P Λpµ0q and χ ą 0, we specify

S “

#

h1
Γ : ∥ℓΓ pm,ωq ´ q pm,ωq∥ ď

#

χ, if λpmq ą 0,

0, otherwise.
,@ω P Ω

+

. (13)

where q pm,ωq :“
ř

Θ p pω | θqλpm | θqµ0,θ is the joint probability of the pair m and ω implied
by information structure λ. Recall from (3) that ℓΓ is applied to h1

Γ. Throughout the proof we
label the messages in M by the posteriors they would induce under the target λ specified by
S; accordingly, λ always refers to a (θ-dependent) distribution over the relevant M . Despite
this labeling, we emphasize that S depends only on the target λ, and not on strategies σ, ρ or
beliefs µ. Owing to the form S takes in (13), we identify each SBS with a tuple xλ,Γ, χ, βy.

Given an SBS xλ,Γ, χ, βy, we consider its Perfect Bayesian Equilibria in (badge-)recursive
strategies. A badge-recursive pure strategy for the receiver is simply a mapping a : tG,Bu ˆ

M Ñ A. A recursive (behaviour) strategy σ “ xσG , σBy for the sender is a pair of functions

σr :
LrˆΓ

Ť

l“1

H1
l´1ˆΘ Ñ ∆M, r “ G,B, (14)

where LG “ 1, LB “ β. A recursive belief system is a function µ : tG,Bu ˆM Ñ ∆Θ. Let S ,
R denote, respectively, the sets of recursive strategies σ and belief systems µ. When play is
recursive, the receiver’s action and beliefs depend only on the current badge status and the

69Any λ P Λpµ0q has an obvious identification with pµpmq, λpmqqmPM P pRN ˆ RqM .
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message sent to her; the sender’s behavior σr
`

h1
l´1phtq, θt

˘

in the lth period t of a phase r may
depend on the current badge status, r, and his private history within the current phase, where
σrpm | h1

l´1q denotes the conditional probability he sends message m. On occasion, we may
identify σ with its equivalent mixed strategy (that is, a distribution over pure badge-recursive
strategies). Similarly, we may also treat S as a set of mixed strategies. We are explicit about
our meaning when we do this.

The strategy profile ⟨σ, a⟩ induces a distribution Pxσ,ay over H. A PBE in recursive strate-
gies (henceforth, a PBE) is a collection xσ, a, µy, where σ, a and µ are badge-recursive, and
(i) given a, σ maximizes E⟨σ̃,a⟩

“
ř

δτ´1vpaτ q | ht, r
t
‰

for each pht, r
tq P Ht ˆRt, t “ 1, . . . ; (ii)

given µ, a maximizes
ř

Θ

µθpr,mqu pθ, ãpmqq for each pr,mq P R ˆ M , where µθpr,mq denotes

the obvious conditional probability, and finally (iii) beliefs satisfy Bayes’ rule, where possible:
for each pr,mq such that P⟨σ,a⟩ rm | rs ą 0,

µθ pr,mq “ µσθ pr,mq :“

Γ
ř

l“1

P⟨σ,a⟩ rθ,m, l | rs

ř

θ1PΘ

Γ
ř

l“1

P⟨σ,a⟩ rθ1,m, l | rs

, (15)

where P⟨σ,a⟩ rθ,m, l | rs is the equilibrium probability that the receiver arrives in the lth period
of the current r-phase, the current state is θ, and message m is sent. The correspondence
µp¨q : S ↠ R identifies for each σ those belief systems which satisfy Bayes’ rule (where
possible) when the sender adopts strategy σ.70 By contrast, recall that the belief system µ
refers to a member of R. When considering a profile xσ, a, µy, the receiver’s strategy apr,mq

will always be understood as the sender-preferred selection in argmaxA
ř

Θ µθpr,mqu pθ, ãq,
r “ G,B; with a small abuse, we may refer to the receiver’s strategy as apr,mq “ apµpr,mqq.
apr,mq always satisfies condition (ii) of a PBE. This understood, it plays no further role in
the analysis and so we suppress it where possible. Henceforth, we simply refer to a PBE as a
tuple xσ, µy.

We prove Theorem 2 using strategies in which the sender’s worst one-shot cheap talk
equilibrium is played whenever rt “ B, whose corresponding stage payoffs we normalize to
p0, 0q. With play and beliefs during B-phases thereby understood, we eschew mention of σBp¨q,
µpB, ¨q below, and focus on equilibrium strategies and beliefs within a G-phase. Accordingly,
we economize on notation by writing σp¨q, µp¨q as shorthand for σGp¨q, µpG, ¨q, respectively.
Similarly, we identify S , R with the sets of strategies and belief systems conditional on r “ G.

For profile ⟨σ, µ⟩, the sender’s discounted payoff VG at the beginning of a G-phase can be
expressed recursively

VG pσ, µq “ p1 ´ δq

Γ
ÿ

l“1

δl´1Eσ rv pµ pmlqqs ` δΓ
´

Pσ rrΓ`1 “ Gs ` δβΓPσ rrΓ`1 “ Bs

¯

VG pσ, µq,

70When P⟨σ,a⟩ rm | rs ą 0, note that µσpr,mq is a singleton subset of ∆Θ; with a small abuse, we
identify µσpr,mq with its unique member in this case, which assigns probability µσ

θ pr,mq to state θ
(hence, the equality in (15)).
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and similarly, receivers’ discounted average payoffs UG are

UG pσ, µq “p1 ´ δq

Γ
ÿ

l“1

δl´1Eσ ru pa pµpmlqq , θlqs

` δΓ
´

Pσ rrΓ`1 “ Gs ` δβΓPσ rrΓ`1 “ Bs

¯

UG pσ, µq ,

where Pσ rrΓ`1 “ Gs “
ř

h1
ΓPS Pσ rh1

Γs “
ř

h1
ΓPS

śΓ´1
l“1 µ0,θσ

`

ml | h1
l´1, θl

˘

p pωl | θlq, and h
1
l´1,

θl,ml and ωl are the obvious projections of h1
Γ. On rearrangement, VG can be written

VG pσ, µq “
p1 ´ δqv̄pσ, µq

1 ´ δΓ ` κpδqPσ rrΓ`1 “ Bs
, (16)

where v̄ pσ, µq “
řΓ

l“1 δ
l´1Eσ rvpµpmlqqs and κpδq “ δΓp1 ´ δβΓq. Similarly,

UG pσ, µq “
p1 ´ δqūpσ, µq

1 ´ δΓ ` κpδqPσ rrΓ`1 “ Bs
. (17)

where ū pσ, µq “
řΓ

l“1 δ
l´1Eσ ru pa pµpmlqq , θlqs.

Finally, fixing a SBS xλ,Γ, χ, βy, let BRδ : R ↠ S be the sender’s best response corre-
spondence, defined by BRδpµq “ argmaxσPS VGp¨, µq. We explicitly denote the dependence of
this correspondence on the sender’s patience δ; though BRδ should be understood throughout
to also depend on xλ,Γ, χ, βy, we suppress it for notational ease.

Preliminary: a continuity consequence of Assumption 3

Loosely, Assumption 3 describes a continuity property of vpµq. To prove Theorem 2, we need
to establish that vpλq inherits a similar property on Λpµ0q. We do so in Lemma 13. Note that
for any pu, vq P C, there exists a λ‹‹ such that pupλ‹‹q, vpλ‹‹qq “ pu, vq and |supp λ‹‹| ď N`2.
We identify another information structure λ‹ that induces the same distribution as λ‹‹, but
may also specify some ‘redundant’ (0 probability) posteriors. For λ P Λpµ0q, label messages
to reflect their induced posteriors, and index M by i P t1. . . . , 2N ` 2u. For λ‹‹, we write
supp λ‹‹ “ tm‹‹

i u
N`2
i“1 . Let Bεpµq, Bεpλq denote open ε-balls in ∆Θ, Λpµ0q respectively. Then:

Lemma 13 Suppose Assumption 3 holds and µ0 P int ∆Θ. For any λ‹‹ P Λpµ0q such that
|supp λ‹‹| ď N ` 2, there exists λ‹ P Λpµ0q with supp λ‹ “ supp λ‹‹, a sequence tλnu and
open balls Bnpλnq such that (i) vpλq is continuous on clpBnpλnqq, (ii) λn Ñ λ‹, and (iii)
vpλnq Ñ vpλ‹q. Moreover, λnpm | θq ą 0 for all n and pm, θq P supp λn ˆ Θ.

Proof : We prove the result for |supp λ‹‹| “ N ` 2; the case |supp λ‹‹| ď N ` 2 is almost
identical and so omitted. Index states by j P t1, . . . , Nu. Choose λ‹ as follows: set its support
tm‹

i u
2N`2
i“1 som‹

i “ m‹‹
i for i ď N`2, andm‹

i “ ei´N´2 for i ą N`2, where ej is the canonical
basis vector for state j; set λ‹pm‹

i q “ λ‹‹pm‹
i q for i ď N ` 2 and λ‹pm‹

i q “ 0 otherwise.

Next, we construct the sequence tλnu in Λpµ0q. To do so, fix x ą 0 such that Bxpµ0q Ă

int ∆Θ and a sequence εn “ 1
n , n P N. For each n, denote by tmn

i u
2N`2
i“1 the support of λn.
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We choose tmn
i u

2N`2
i“1 as follows: for i ď N ` 2, select each mn

i from Bεnpm‹
i q XXm‹

i
X int ∆Θ

so that zn :“
řN`2

i“1 λ‹pm‹
i qpm‹

i ´ mn
i q satisfies ||zn|| ą 0. This is possible because—under

Assumption 3—each Bεnpm‹
i q XXm‹

i
X int ∆Θ is non-empty and open. To determine mn

i for

i ą N`2, first define γn :“ x
x`2||zn|| . It is easily verified that (i) µ0`

γn

1´γn zn P Bxpµ0q and (ii)

||zn|| ď εn. As µ0`
γn

1´γn zn P int ∆Θ and the set tm‹
i uiąN`2 is linearly independent, it follows

from Rudin (1964), Theorem 9.8(b) (see also p.211) that for each n there is a 0 ă ε̃n ď εn

such that if mi P Bε̃npm‹
i q, @i ą N ` 2, then there exist strictly positive weights tαiuiąN`2,

with
ř

iąN`2 αi “ 1 and
2N`2
ÿ

i“N`3

αimi “ µ0 `
γn

1 ´ γn
zn. (18)

By Assumption 3, we can therefore choose mn
i P Bε̃npm‹

i q XXm‹
i

X int ∆Θ and corresponding
positive weights tαn

i uiąN`2 satisfying (18). Now define λn as follows: set λnpmn
i q “ γnλ‹pm‹

i q

for i ď N ` 2, and λnpmn
i q “ p1 ´ γnqαn

i for i ą N ` 2. Note that each λnpmn
i q is non-

negative, and
ř2N`2

i“1 λnpmn
i q “ 1. Moreover, rearranging (18) and using

ř

λ‹pm‹
i qm‹

i “ µ0
shows

ř

λnpmn
i qmn

i “ µ0, so that λn P Λpµ0q.

Next, we identify the relevant open balls Bnpλnq associated with each λn. Since mn
i P

Xm‹
i
for all i “ 1, . . . , 2N ` 2, there exists for each n an ϵn ą 0 such that clpBϵnpmn

i qq Ă

X‹
mi

, for all i “ 1, . . . , 2N ` 2. Choose Bnpλnq “ Bϵnpλnq. We may now verify that the

sequences tλnu, tBnpλnqu have the desired properties. Since ||λ ´ λn||2 “
ř2N`2

i“1 |λpmiq ´

λpmn
i q|2`

ř2N`2
i“1 ||mi ´ mn

i ||2, notice that λ P clpBnpλnqq implies mi P clpBϵnpmn
i qq, for all i.

Hence, for λ P clpBnpλnqq, each vpmiq is continuous inmi and therefore in λ (mi identifies with
a projection of λ; recall footnote 69), from which property (i) follows. Noting that γn Ñ 1
and µni Ñ µ‹

i for all i, property (ii) also follows. (iii) follows because each mn
i P Xm‹

i
and

by Assumption 3, v is continuous on clpXm‹
i
q. Finally, the claim in the last sentence follows

because each mn
i P int ∆Θ, αn

i ą 0, and γn P p0, 1q. l

Preliminary: existence of bounded equilibria

The proof of Theorem 2 below proceeds by ‘trapping’ equilibrium strategies and beliefs close
to appropriate targets. To that end, we introduce the following concepts. First, for an
SBS xλ,Γ, χ, βy and recursive strategy σ, define the time-average strategy during a G-phase
(induced by σ) as

σ̄ pm, θq :“

řΓ
l“1 Eσ

“

σ
`

m | h1
l´1, θ

˘

| r “ G
‰

Γ
, (19)

where the expectation is taken over h1
l´1, for l “ 1, . . . ,Γ. Second, for d ą 0, define the set of

d-bounded strategies by Sd “ tσ P S : ||σ̄ pm, θq ´ λpm | θq|| ď d,@pm, θq P M ˆ Θu, where λ
is the ‘target’ defined by xλ,Γ, χ, βy. Third, let Rd “ tµ P R : ||µpmq ´m|| ď d,@m P Mu be
the set of d-bounded belief systems. Fourth, define

Λ1 “

!

λ P Λpµ0q : Dd1 ą 0 s.t. (i) @ 0 ă d ď d1, pvpµpmqqqM is continuous on Rd,

and (ii) λpm | θq ą d, @pm, θq P M ˆ Θ
)

.
(20)
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Λ1 specifies target information structures for which the sender’s payoff has useful continuity
properties, so long as beliefs are d-bounded, for some d sufficiently small.71 Moreover, any
λ P Λ1 induces each m P M with strictly positive probability. Owing to its connection
with Lemma 13, Λ1 will be useful in our construction of a limit SBS-equilibrium. Finally,
let Λpµ0q “ tλ P Λpµ0q : vpλq ą 0u be the set of information structures for which the
sender’s payoff exceeds the worst one-shot cheap talk payoff. We can now prove the following
proposition on the existence of PBE with d-bounded strategies and beliefs:

Proposition 6 For any λ P Λ1 XΛpµ0q, there exists d1 ą 0 such that for any 0 ă d ď d1 there

is a SBS xλ,Γ1, χ1, β1y and a δ
1

ă 1 (which may depend on d) such that for all δ
1

ď δ ă 1 there
exists a PBE

xσ‹‹
δ , µ

‹‹
δ y P Sd ˆ Rd,

where σ‹‹
δ and µ‹‹

δ may depend on δ and xλ,Γ1, χ1, β1y.

Proof : Fix some λ P Λ1 X Λpµ0q. Choose d1 ą 0 satisfying conditions (i) and (ii) in (20),
and moreover, satisfying Eλ rvpµpmqqs ą 0 for all µ P Rd1 . For any d ď d1, we show that

there is a SBS xλ,Γ1, χ1, β1y and a δ
1

ă 1 for which the claim is true. In particular, we show
that fixed-point arguments can be applied to the space Sd ˆ Rd, from which existence of the
requisite PBE xσ‹‹

d,δ, µ
‹‹
d,δy will follow. The argument proceeds in three steps:

Step 1: Show there exists 0 ă dS ď d such that σ P SdS ùñ µσ P Rd. That is, µ
SdS Ă Rd.

Note that (15) can be written µσpmq “
µ0,θσ̄pm,θq

ř

θ1 µ0,θ1 σ̄pm,θ1q
for m P M . As λ satisfies condition (ii)

of (20), µσ may be considered a function of σ̄, and is continuous at σ̄ “ λ. Hence, there exists
a d1

S ą 0 such that σ P Sd1
S

ùñ µσ P Rd. Taking dS “ mintd1
S , du completes the claim.

Step 2: Show there exists an SBS xλ,Γ1, χ1, β1y and a δ
1

ă 1 such that for all δ
1

ă δ ă 1,
µ P Rd1 ùñ BRδpµq Ă SdS .

To prove this, first define some useful sets. Given a SBS xλ,Γ, χ, βy and a real number z ą 0, let
S 2

z :“ tσ P S : Pσ rrΓ`1 “ Bs ď zu be the set of strategies for which the sender loses his badge
with probability no greater than z. For η ą 0, let S 1

η : tσ P S : ||Eσ rℓΓpm,ωqs ´ qpm,ωq|| ď

η,@pm, θq P MˆΘu be the set of strategies whose expected empirical frequencies Eσ rℓΓpm,ωqs

are within distance η of q. Fixing 0 ă dS ď d1, we show there exists a η ą 0 and for this η, a
z ą 0, and for this z, a xλ,Γ2

z, χ
2
z, β

2
z y and δ

2

z ă 1, such that for δ ě δ
2

z and all µ P Rd1

BRδpµq Ă S 2
z Ă S 1

η Ă SdS . (21)

The following three lemmas establish this chain.

Lemma 14 Suppose µ P Rd1. Then, for any z P p0, 1q, there exist Γ2
z, χ

2
z ą 0, β2

z and a

δ
2

z ă 1 such that for SBS xλ,Γ2
z, χ

2
z, β

2
z y and δ ě δ

2

z,

BRδpµq Ă S 2
z , (22)

71Recall that, for a target λ, M is indexed according to supp λ. As a result, Rd depends on λ, so
condition (i) in the definition of Λ1 may imply a nontrivial restriction on Λpµ0q.
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where Γ2
z Ñ 8 and χ2

z Ñ 0 as z Ñ 0. Furthermore, for any ϵ ą 0, there is a zϵ ą 0 such
that if z P p0, zϵs, then the sender’s highest payoff in the game induced by SBS xλ,Γ2

z, χ
2
z, β

2
z y

satisfies, for any δ P p0, 1q,

max
σPS

VGpσ, µq ě Eλ rv pµpmqqs ´ ϵ. (23)

λ P Λpµ0q and d1-boundedness of µ together ensure that if the sender chooses σpm | h1
l, θq “

λ1pm | θq for all h1
l P

Γz
Ť

l“1

Hl, then VGpσ, µq ą 0. As a result, Lemma 14 is a straightforward

extension of Lemma 6.1, Radner (1985) to our setting and hence we omit its proof.72

Lemma 15 For any η ą 0, there exists a z ą 0 such that, for any 0 ă z ď z and correspond-
ing xλ,Γ2

z, χ
2
z, β

2
z y defined in Lemma 14,

S 2
z Ă S 1

η.

Proof : Fix η ą 0. We show that there exists a z such that for z ď z,
`

S 1
η

˘c
Ă pS 2

z q
c.

First consider the SBS xλ,Γ2
z, χ

2
z, β

2
z y corresponding to some arbitrary z, and thereafter some

σ P
`

S 1
η

˘c
. As σ R S 1

η, there must be some pm,ωq such that ||Eσ rℓ pm,ωqs ´ q pm,ωq|| ą η.
Suppose Eσ rℓ pm,ωqs ă q pm,ωq ´ η (the other case is symmetric, and hence omitted). By
the definition of S we have

Pσ

“

rΓ2
z`1 “ G

‰

“ Pσ

”

h1
Γ2
z

P S
ı

ď Pσ

“

ℓ pm,ωq ě q pm,ωq ´ χ2
z

‰

.

But by Markov’s inequality, the right-hand expression is bounded by

Pσ

“

ℓ pm,ωq ě q pm,ωq ´ χ2
z

‰

ď
Eσ rℓ pm,ωqs

q pm,ωq ´ χ2
z

.

As z Ñ 0, the limit superior of the right-hand side is no more than 1 ´
η

qpm,ωq
. Hence, there

is a z ą 0 such that z ď z and σ P
`

S 1
η

˘c
implies Pσ

“

rΓ2
z`1 “ G

‰

ă 1 ´ z; i.e., σ P pS 2
z q

c. l

Lemma 16 For any dS ą 0, there exists a η ą 0 (independent of Γ, χ, β and δ) such that

S 1
η Ă SdS .

Proof : We show by induction that σ̄ and Eσ rℓs are related by a continuous bijection,
which is independent of Γ, χ, β and δ. Let ℓ pθ,m, ωq be the joint frequency of triple pθ,m, ωq.
We argue that, for any strategy σ and any pθ,m, ωq,

Eσ rℓ pθ,m, ωqs “ p pω | θqµ0,θσ̄ pm, θq (24)

and hence Eσ rℓ pm,ωqs “
ř

Θ p pω | θqµ0,θσ̄ pm, θq . To make the inductive argument clear,
we slightly abuse notation and write ℓT pθ,m, ωq to emphasize the dependence of the relevant

72When VGpσ, µq ą 0, Radner (1985)’s argument shows that for an appropriately chosen SBS a
patient enough sender optimally chooses to pass with high enough probability. Similarly, (23) follows
because playing σpm | h1

l, θq “ λpm | θq is always feasible, and sufficiently unlikely to induce a B-phase.
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realized frequency on the number of periods T over which it is taken; we treat σ̄T similarly.
Clearly, (24) holds for T “ 1. To make the inductive step, assume (24) holds for all t ď T .
We show it also holds for T ` 1. For any ℓ, we can write

ℓT`1 pθ,m, ωq “
T

T ` 1
ℓT pθ,m, ωq `

1

T
ℓ1 pθ,m, ωq . (25)

Using the law of iterated expectations, we can therefore write:

Eσ rℓT`1 pθ,m, ωqs “
T

T ` 1
Eσ rℓT pθ,m, ωqs `

1

T ` 1
Eσ

“

Eσ

“

ℓ1 pθ,m, ωq | h1
T

‰‰

.

By the inductive hypothesis, both terms on the right-hand side can be rewritten using (24).
Moreover, a recursion similar to (25) can be written for σ̄T`1pm, θq. Putting these observations
together shows (24) holds for T ` 1. Thus, for each ω, σ̄pm, ¨q “ P´1E rℓpm, ¨qs, where P is a
matrix of probabilities p pθ | ωq—invertible under Assumption 2—and σ̄pm, ¨q, E rℓpm, ¨qs are
the obvious vectors. σ̄pm, ¨q is continuous in E rℓpm, ¨qs, and P´1 is obviously independent of
Γ, χ, β, δ. Existence of the required η follows (see Theorem 9,7(a), Rudin (1964)). l

To conclude step 2: For fixed λ P Λ1 X Λpµ0q and any 0 ă dS ď d, choose η accord-
ing to Lemma 16, a corresponding z ď z according to Lemma 15, and set xλ,Γ1, χ1, β1y “

xλ,Γ2
z, χ

2
z, β

2
z y and δ

1
“ δ

2

z according to Lemma 14. Then chain (21) clearly applies for δ ě δ
1
;

in particular, BRδpRd1q Ă SdS .

Step 3: Prove existence of a PBE xσ‹‹
δ , µ

‹‹
δ y P Sd ˆ Rd, via fixed points.

Fix d ď d1 and dS ď d according to step 1, and set xλ,Γ1, χ1, β1y and δ
1
according to step 2.

We find a PBE in the set SdS ˆ Rd Ă Sd ˆ Rd. To do so, we verify that a standard fixed
point theorem applies.

First, notice that the spaces Rd and SdS (the latter considered a set of mixed strategies)
are compact and convex. Second, note that—restricted to SdS—µσ is a continuous function
(see step 1). Furthermore, µσ maps from SdS into Rd: µSdS Ă Rd (step 1). Third, VG
is continuous on SdS ˆ Rd, and quasiconcave in σ. To see its continuity, consider (16):
the numerator p1 ´ δqv̄pσ, µq is continuous in pσ, µq, since d ď d1 implies pvpµpmqqqmPM is
continuous for µ P Rd; similarly, Pσ rrΓ1`1 “ Bs is obviously continuous (linear) in the mixed
strategy σ; finally, the denominator is also bounded away from 0 for any δ ă 1. To see that
VG is quasiconcave in σ, consider mixed strategies σ, σ1 and σ̃ “ γσ` p1´γqσ1 and note that,
after a little algebra, VG pσ̃, µq can be written VGpσ̃, µq “ wVGpσ, µq ` p1 ´wqVGpσ1, µq, where

w “ γ 1´δΓ´κpδqPσrrΓ`1“Bs

1´δΓ´κpδqPσ̃rrΓ`1“Bs
P p0, 1q. Hence, VG pσ̃, µq ě mintVG pσ, µq ,VG pσ1, µqu, as required.

Fourth, note that for δ ě δ, BRδ maps Rd into SdS : BRδpRdq Ă SdS (step 2).

Hence, there exists (Debreu (1952), Glicksberg (1952), Fan (1952)) a fixed point xσ̂δ, µ
‹‹
δ y

of the map pBRδp¨q, µp¨qq in the set SdS ˆ Rd Ă Sd ˆ Rd (which may depend on δ). That is,
the profile xσ̂δ, apµ‹‹

δ p¨qqy is a Nash equilibrium of the game induced by the G-phase of SBS
xλ,Γ1, χ1, β1y. To conclude, we argue that there is an alternative strategy σ‹‹

δ P SdS such that
xσ‹‹

δ , µ
‹‹
δ y is a PBE. Construct σ‹‹

δ as follows: for h1
l´1, l “ 1, . . . ,Γ such that Pσ̂δ

“

h1
l´1

‰

ą 0,
set σ‹‹

δ “ σ̂δ; for histories h1
l´1, l “ 2 . . . ,Γ1

d, that arise with probability 0, start with l “ Γ1

and work backwards within the G-phase, at each stage choosing σ‹‹
δ ph1

l´1q to maximize the
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sender’s continuation payoff from h1
l´1. Clearly, σ‹‹

δ and σ̂δ induce the same distribution

Pσ‹‹
δ

“ Pσ̂δ
over H. This implies σ‹‹

δ P SdS . Moreover, since µ‹‹
δ “ µσ̂δ , it implies µ‹‹

δ “ µσ
‹‹
δ ,

too: the profile xσ‹‹
δ , µ

‹‹
δ y satisfies condition (iii) of PBE. As the receiver’s strategy is apµ‹‹

δ q by

construction, condition (ii) trivially holds too. Finally, (i) holds for all h1
l´1 P

ŤΓ1

l“1Hl´1: since
VGpσ‹‹

δ , µ
‹‹
δ q “ VGpσ̂δ, µ

‹‹
δ q and σ̂δ is a best response to apµ‹‹

δ p¨qq at h1
0, so too is σ‹‹

δ . Hence,
σ‹‹
δ is necessarily a best response at every on-path history. By construction, σ‹‹

δ satisfies
condition (i) for the off-path histories in a G-phase too. l

Proof of Theorem 2

Fix pu, vq P C, and an associated λ‹ for which (a) pupλ‹q, vpλ‹qq “ pu, vq and (b) the conclusions
of Lemma 13 apply. Fix 0 ă ε ď vpλ‹q. By conditions (ii) and (iii) of Lemma 13, there exists
a λε P Λ1 X Bεpλ‹q such that ||vpλεq ´ vpλ‹q|| ă ε

2 and ||upλεq ´ upλ‹q|| ă ε
2 . Take λε for

the target, and set d1 in accordance with Proposition 6. We show that there exists Γε, χε, βε
and δε ă 1 such that for patience δε and SBS xλε,Γε, χε, βεy there is a PBE xσ‹

ε , µ
‹
εy with

||VGpσ‹
ε , µ

‹
εq ´ vpλεqq|| ă ε

2 and ||UGpσ‹
ε , µ

‹
εq ´ upλεq|| ă ε

2 . It then follows immediately that

||VGpσ‹
ε , µ

‹
εq ´ vpλ‹q|| ă ε and ||UGpσ‹

ε , µ
‹
εq ´ upλ‹q|| ă ε. Choosing a sequence εn “

vpλ‹q

n ,
n P N, the sequences txΓεn , χεn , βεnyun, tδεnun and txσ‹

εn , µ
‹
εnyun will therefore constitute a

limit SBS-equilibrium with the appropriate properties.

To identify the appropriate values Γε, χε, βε and δε, we will apply limiting arguments to
(16) and (17). To that end, consider a sequence d “ d1

i , i P N. Next, use Proposition 6 to

choose corresponding sequences zd Ñ 0, xΓ2
zd
, χ2

zd
, β2

zd
y and δ

2

zd
such that for δ ě δ

2

zd
there is

a PBE xσ‹‹
d,δ, µ

‹‹
d,δy P Sd ˆ Rd: specifically, for each d, choose η̃d according to Lemma 16, and

a corresponding z̃d according to Lemma 15. Now, set zd1 “ z̃d1 and zd1{i “ mintzd1{i´1p1 ´
1
i q, z̃d1{iu for i ą 1. Since zd ď z̃d, it follows from Lemma 15 that zd and xΓ2

zd
, χ2

zd
, β2

zd
y satisfy

S 2
zd

Ă S 1
η̃d
. Choosing δ

2

zd
according to Lemma 14, the chain (21) holds for each d, η̃d, zd,

xΓ2
zd
, χ2

zd
, β2

zd
y and δ

2

zd
along the sequence, from which existence of xσ‹‹

d,δ, µ
‹‹
d,δy P Sd ˆ Rd

follows (step 3). Write xΓ1
d, χ

1
d, β

1
dy “ xΓ2

zd
, χ2

zd
, β2

zd
y and δ

1

d “ δ
2

zd
.

Since Sd and Rd are each compact subsets of Euclidean spaces, for each d, there is a

subsequence δ Ñ 1 on which
´

σ‹‹
d,δ, µ

‹‹
d,δ

¯

converges to some
´

σ‹‹
d,1, µ

‹‹
d,1

¯

P Sd ˆ Rd. For

notational ease let Vd,δ “ VGpσ‹‹
d,δ, µ

‹‹
d,δq. Consider (16): fixing any d, a relatively simple

application of l’Hôpital’s rule shows that

Vd,1 “ lim
δÑ1

Vd,δ “

ř

mPM

ˆ

ř

θPΘ

µ0,θσ̄
‹‹
d,1pm, θq

˙

v
´

µ‹‹
d,1pmq

¯

1 ` β1
dPd,1

,

where σ̄‹‹
d,1pm, θq is the time-average strategy (19) induced by σ‹‹

d,1 and Pd,1 “ Pσ‹‹
d,1

”

rΓ1
d`1 “ B

ı

.

Now, taking d Ñ 0, we have

lim sup
dÑ0

Vd,1 “
Eλε rvpmqs

1`lim inf
dÑ0

βdPd,1
and lim inf

dÑ0
Vd,1 “

Eλε rvpmqs

1`lim sup
dÑ0

βdPd,1
, (26)
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where we have used limdÑ0 σ̄
‹‹
d,1 “ λε and limdÑ0 µ

‹‹
d,1pmq “ m for all m P M . By inspection

of (26), it is obvious that lim supVd,1 ď vpλεq. Moreover, as limdÑ0 µ
‹‹
d,1pmq “ m, @m P M ,

it is a routine exercise to verify that lim infdÑ0 Vd,1 ě vpλεq: if the inequality were not
satisfied, then there exists ϵ ą 0, a d satisfying zd ď zϵ, and some δ P rδd, 1q such that

Vd,δ ă Eλε

”

vpµ‹‹
d,δpmqq

ı

´ ϵ, contradicting the last sentence in Lemma 14. Therefore, we

may conclude that limdÑ0 V1,d exists and equals vpλεq; by inspection of (26), we can then
also conclude limdÑ0 βdPd,1 exists and equals 0. Using (17) and limdÑ0 βdP1,d “ 0, a similar
limiting exercise for Ud,δ “ UGpσ‹‹

d,δ, µ
‹‹
d,δq shows limdÑ0 Ud,1 “ upλ‹q. This means that, for

each ε ă vpλ‹q, there exists a dε ą 0 (which may depend on ε) such that for any d ď dε there

is a δ̃d P rδ
1

d, 1q such that ||Vd,δ ´ vpλεq|| ă ε
2 and ||Ud,δ ´ upλεq|| ă ε

2 for δ “ δ̃d.

We are now ready to identify the desired limit SBS-equilibrium: fix the sequence εn “
vpλ‹q

n , n P N. Put d1 “ dε1 and thereafter, successively assign dn “ mintdn´1p1´ 1
nq, dεnu. Cor-

respondingly, put xλεn ,Γεn , χεn , βεny “ xλεn ,Γ
1
dn
, χ1

dn
, β1

dn
y, and δεn “ δ̃dn as per the preceding

paragraph, and finally σ‹
εn “ σ‹‹

dn,δεn
and µ‹

εn “ µ‹‹
dn,δεn

. By construction, payoffs converge
along this sequence to pupλ‹q, vpλ‹qq. Writing µm :“ µ‹

εpmq, notice that G-information for
xσ‹

ε , µ
‹
εy corresponds to the distribution σ‹

ε ˝ µ‹´1
ε over tµmiu

2N`2
i“1 , where σ‹

ε is the obvious
time-average strategy. Since dn Ñ 0 along the sequence, we have σ‹

εn Ñ λ‹ and µ‹
εnpmiq Ñ m‹

i

(recall the definitions of Sd, Rd and m‹
i ), which implies G-information converges to λ‹. This

shows the sequence has properties (2) and (3) of the theorem, so we are done. l

Finally we explain how to extend Theorem 2 to allow for the single uninformative action a1.
A small adjustment to the proof of Proposition 6 is all that is required. One chooses standards
S that do not impose restrictions on the (without loss of generality, single) message m1 that
would induce a1 under the target λ.73 These changes have no consequence for step 1. They
also have no consequence for Lemmas 14 - 15. Repeating the proof of Lemma 16 verbatim, it
is easy to see that for any m P Mztm1u and θ P Θ, σpm, θq can be bounded close to λpm | θq

whenever σ is chosen so that Erℓpm,ωqs is sufficiently close to qpm,ωq, for all ω P Ω. Since
ř

M σpm, θq “ 1 “
ř

M λpm | θq for all θ P Θ, the last point is sufficient to ensure that σpm1, θq

is close to λpm1 | θq for all θ P Θ, too. In other words, Lemma 16 extends to the new standards.
Finally, step 3 also carries over: the new standards have no consequence for the arguments
made there. In particular, S only arises in step 3 via Pσ rrΓ`1 “ Bs “ Pσ rh1

Γ R Ss—the same
argument shows this is still continuous with respect to the mixed strategy σ (we did not use
any special structure of S, beyond being a fixed subset of HΓ). Thereafter, the rest of the
proof carries over without change. l

We conclude with a remark on the implications of our proof: while our result is framed in
terms of a limit SBS-equilibrium—which pairs each SBS xλεn ,Γεn , χεn , βεny with a single value
of δεn—there is nothing ‘knife-edge’ about our argument. Indeed, the limiting arguments in
the last two paragraphs of the proof of Theorem 2 immediately imply the following stronger
result: For any εn, SBS xλεn ,Γεn , χεn , βεny and δ ě δεn , the PBE xσ‹‹

dn,δ
, µ‹‹

dn,δ
y (which exists;

see the third paragraph on pg. 55) satisfies ||Vdn,δ ´ vpλ‹q|| ă εn and ||Udn,δ ´ upλ‹q|| ă εn.

73Of course, these new standards require obvious minor changes to the definitions of S 2
z and S 1

η.

56



Online Appendix

Supplementary material for section 3.1

We first define two relevant (pure) communication strategies for the stage game. Let σT be
the truthful strategy, where σT p‘like new’ | θq “ 1 if θ “ h and 0 otherwise, and let σb be
‘babbling’: σbp‘like new’ | θq “ 1 for θ “ h, l. We construct an equilibrium of the incomplete
record game where the sender uses either σT or σb as a function of the public record, rt. For
brevity, we use strategies which from t “ 3 onward depend on the public record indirectly via
a public state variable, st P tsT , sbu, which evolves as follows: at t “ 3, if ω1 ‰ b then st “ sT .
If ω1 “ b, ω2 ‰ b then s3 “ sT with probability 1 ´ q ě 0; and if ω1 “ ω2 “ b s3 “ sT with
probability 1´ q´z ě 0 for parameters q, z ě 0. At t ą 3, if st´1 “ sb then st “ sb. However,
if st´1 “ sT then st “ sT with certainty if ωt ‰ b and with probability 1 ´ z if ωt “ b.

Consider the following strategy profile. The sender plays σT if t “ 1, if t “ 2 and
ω1 “ b, and if st “ sT , t ě 3. Otherwise, he plays σb. If t P t1, 2u or st “ sT , then
receiver buys if and only if mt “ ‘like new’. Otherwise she never buys, regardless of mt.
Finally set q “ p1 ´ δq

1´δpp`µ0´2pµ0q

δ2µ0p2p´1q
, z “ 1´δ

δµ0p2p´1q
and l “ ´1. Note q, z ě 0, since

p ` µ0 ´ 2µ0p “ pp1 ´ µ0q ` p1 ´ pqµ0 and p ą 1
2 . Moreover for p ą 1

2 , µ0 P p0, 1q, q, z are
continuous in δ, with q “ z “ 0 at δ “ 1. Thus there is a threshold δpp, µ0q ă 1 s.t. q` z ď 1
for δ ě δpp, µ0q.

We first verify equilibrium. Trivially each receiver at t ‰ 2 is playing a best response. It
is also easy to show the sender’s strategy is a best response for δ ě δpp, µ0q.74 At t “ 2, the
receiver’s best response is indeed to buy iff m2 “ ‘like new’, so long as:

Pr rθ “ h | m2 “ ‘like new’s “
µ0

1´p1´µ0qPrrω1“bs
“

µ0

1´p1´µ0qµ0p1´pq
ě 1

2 . (27)

For any p ą 1
2 , the LHS is continuous in µ0 and (27) holds strictly at µ0 “ 1

2 . Thus for µ0
close enough to 1

2 the second receiver best responds too.

Let V T “ 1
1´δµ0p1 ´

1´p
p q. Applying Fudenberg and Levine (1994), it is easy to see V T is

the sender’s maximal payoff in any equilibrium with a complete public record. We now show
players can be better off on average. The sender’s payoff in this equilibrium can be written

V 1 “ V T ` δ

ˆ

1 ´ µ0 ` µ0
1 ´ p

p

˙

ą V T . (28)

The discounted sum of receivers’ utility can be written

U 1 “ UT ` δ

ˆ

µ0
1 ´ p

p
´ pPr rω1 ‰ bs ´ Pr rω1 “ bsq p1 ´ µ0q|l|

˙

, (29)

74Available on request.
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where Pr rω1 “ bs “ µ0p1 ´ pq, UT “ 1
1´δµ0p1 ´

1´p
p q. On rearrangement, U 1 ą UT iff

1 ´ p

p
ą p1 ´ 2µ0p1 ´ pqq

1 ´ µ0
µ0

. (30)

Clearly both LHS and RHS are continuous in p, µ0, for µ0 ą 0. At µ0 “ 1
2 , (30) is satisfied

strictly for 1
2 ď p ă

?
5´1
2 . Thus clearly there exist µ0, p close enough to 1

2 to satisfy both
(27) and (30). Indeed both hold for p “ 6

11 , µ0 “ 5
11 . Finally, for any such choice this is an

equilibrium so long as 1 ą δ ě δpp, µ0q. For p “ 6
11 , µ0 “ 5

11 , δ ě 123
126 is sufficient. l

Supplementary Material for Section 4

Here we develop the details behind the claims made in section 4.

Section 4.1

To be concrete, we develop arguments in the context of example 1 with l “ ´1, µ0 “ 1
3 ,

p “ 1, and δ Ñ 1. The threshold belief is µ “ 0.5 and is induced by lying half the time
when quality is low: λp0.5|θ “ lq “ 0.5. Under the assumption of random arrival, an average
payoff of Vkgpµ0q “ 2

3 can be attained easily in equilibrium using a simple badge system with
Γ “ 2, β “ 8, and standards requiring no negative feedback in the second period of an
evaluation. In this equilibrium the seller always lies in the first period of an evaluation and
is honest in the second. Hence, it could not be an equilibrium if customers knew t — the
first customer would never buy knowing the seller will lie whenever θ “ l. Nonetheless, when
t is observable the platform could replicate the effect of random arrivals with a system that
randomizes evaluation dates. We construct such a system below:

Proposition 7 Consider example 1 with µ0 ă µ. Expected payoff Vkgpµ0q is attainable using
a badge system with stochastic evaluation dates when t is public.

Proof : Consider the following badge system with random evaluation dates. At t “ 1, the
seller is given a rating r1 “ G. At the outset, the system determines with equal probability
whether the seller’s G rating will be evaluated on odd, or on even, days – and this outcome
is told privately to the seller. If an evaluation occurs in period t, the seller retains a G rating
until the next evaluation if he avoids negative feedback from customer t. Otherwise, his rating
is switched to B forever thereafter. At any t, the incoming customer observes t and the current
value of rt only.

We argue that the following strategy profile is an equilibrium for δ large enough. Moreover
the seller’s discounted average payoff converges to 2

3 as δ Ñ 1. In any evaluation, the seller
always recommends ‘buy’ in the first period, irrespective of current θt, and recommends ‘buy’
in the second period if and only if the current θt “ h. Otherwise (if rt “ B), the seller always
recommends ‘buy’ again. Each receiver adopts the following strategy: if rt “ G, the receiver
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obeys the seller’s recommendations, while if rt “ B she does not buy. Checking equilibrium in
this case is trivial. The only deviation that really needs checking is at those histories beginning
in the second period of an evaluation. By the one shot deviation property, we need only check
that the seller does not wish to deviate from honesty in the second period of an evaluation.
This is the case if:

µ0 ` δV ‹ ě 1 ` δµ0V
‹,

where V ‹ “
1`δµ0

1´δ2
is his continuation payoff in the event of retaining a G rating. On rear-

rangement, this becomes

δ
1 ` δµ0
1 ´ δ2

ě 1.

As δ Ñ 1 the RHS of this expression becomes infinite. Hence, for δ large enough, we have veri-
fied the seller is best responding. Finally, applying l’Hôpital’s rule verifies that the discounted
average payoff p1 ´ δqV ‹ Ñ 2

3 . l

What if customers must be informed of the dates on which evaluations take place? Even
here it turns out the platform can still replicate the required uncertainty, so long as it adopts
more complex standards that depend on full sequences of outcomes rather than simple aver-
ages:

Proposition 8 Consider example 1 with µ0 ă µ. Expected payoff Vkgpµ0q is attainable using
a badge system with complex standards and public deterministic evaluation dates.

Proof : Consider the following standard. Let evaluation phases consist of T periods, where T
is even. At the end of any evaluation, the seller is allowed to avoid a permanent B rating if
his outcomes show either: (i) he lied only on even days, or (ii) he lied only on odd days. If he
chooses the latter, then at the end of the evaluation he faces a probability q of a permanent B
rating, which is designed to ensure he is indifferent between the two strategies. The required
q is

q “
1 ´ µ0
δ ` µ0

`

1 ´ δT
˘

p1 ´ δq

δT
.

Notice that q is decreasing in δ, with q Ñ 0 as δ Ñ 1. Hence, there exists a threshold δ1 such
that q is indeed a well-defined probability, so long as δ ě δ1.

We first argue that the strategy profile described in section 4 is an equilibrium, so long as
δ ě maxtδ1, δ2u, where δ2 ă 1 is the minimal value of x such that75

1 ´ xT ď xT ¨
µ0 ` x

1 ` x
. (31)

Verifying that customers best respond is trivial and hence omitted. Focus instead on the seller
and let his continuation value from adopting the strategy proposed in the main text be V ‹.
If he lies only on even days during an evaluation, he gets

µ0 ` δ ` δ2µ0 ` ¨ ¨ ¨ ` δT´2µ0 ` δT´1 ` δTV ‹.

75This minimum is well-defined: the left (right) side of the inequality is continuous and decreasing
(increasing) in δ. Finally, the inequality is violated at x “ 0 and holds strictly at x “ 1.

59



Similarly, if he lies on odd days he gets

1 ` δµ0 ` δ2 ` ¨ ¨ ¨ ` δT´2 ` δT´1µ0 ` δT p1 ´ qqV ‹.

In order to be an equilibrium, the seller must be indifferent between these strategies. Using
the maximum principle, it is easy to verify that V ‹ “

µ0`δ
p1`δqp1´δq

and that indifference indeed

holds for our choice of q. Moreover, any other deviation cannot be profitable for δ ě δ2. In
any evaluation, the seller’s optimal deviation from his equilibrium strategy is trivially to lie
in all periods. This is not profitable if

1 ´ δT

1 ´ δ
ď δTV ‹

which on rearrangement is just (31), at x “ δ. Since δ ě δ2 this is indeed satisfied. Finally,
direct calculation for µ0 “ 1

3 verifies that limδÑ1 p1 ´ δqV ‹ “ 2
3 . l

Section 4.2

Proof of Proposition 5

For the first claim, consider the following blind sender review systems. At each t, the incoming
customer observes the complete history of feedback ht. Badges are again awarded to the seller
based on evaluations of standards of length T , but now by the customers rather than a third
party.76 The important novelty here is that the seller no longer observes the individual feed-
back of past customers, but only the badges. Hence his history at t ą 1 is prτ , θτ ,mτ , aτ q

t´1
τ“1

and at t “ 1 it is r1 “ G. But this maps into the framework of Abreu et al. (1991). Hence
we can apply their Proposition 6 to conclude that the (pure) strategy of truth telling can be
supported with an expected punishment converging to 0 as the sender gets patient (and T
gets large). This can be done by adopting standards in which the seller retains a G rating if
and only if every product sold receives bad feedback.

For the final part of the Proposition, we focus on public PBE of any blind sender system
(i.e. across all possible standards). As argued in the main text this is the relevant concept for
understanding the ‘reusable punishment’ insight. But the logic of Fudenberg et al. (1990) can
again be applied to this problem to show that the sender’s payoff in any PPBE is bounded
by Proposition 2. In example 1, this bound corresponds to the truth telling payoff. l

Section 4.4

We briefly illustrate the wider applicability of the results of section 3.2 with an example:

76For simplicity we assume here that if a sender ever receives a B rating, this is permanent. We
allow for a PRD, so punishments can be made a probabilistic function of outcomes if necessary
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Example 3 Replace the stage game of example 1 with the following moral hazard game. The
customer chooses whether to buy, a P tB,Nu. The seller has no private information but
chooses an effort level, e P th, lu. If the product is bought, the customer sees a noisy signal of
effort ωt P th, lu, where ppωt “ e|eq ą 0.5. Otherwise ωt “ H. Payoffs are as follows:

Seller

Customer
B N

h 1, 1 0, 0
l 3,´1 0, 0

The sets of individually rational feasible stage payoffs and payoffs attainable in equilibrium
are the same as in example 1. From Theorem 2 we obtain the following.

Corollary 1 Consider example 3. Any individually rational, feasible payoff profile is attain-
able as an equilibrium with some SBS as δ Ñ 1.

The only important difference between example 3 and 1 is what a customer learns about
ht and t before she acts. In 3 the seller’s effort teaches her nothing, whereas in 1 his message
provides some information. For instance, if a receiver observes a ‘used’ message then she
can infer she is not at a history at which the sender strictly gains from mis-selling. Since
example 2 does not suffer this inference problem, the argument underpinning Theorem 2
applies a fortiori to classic moral hazard problems too. Indeed, it would be a relatively
simple extension of Theorem 2 to show this holds in a wide class of games with a long-run
player facing a sequence of short-run players.
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