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Abstract

We consider a class of persuasion games in which the sender has rank-dependent
(Yaari (1987)) preferences. Like much of the recent Bayesian persuasion literature, we
allow the sender to choose from a rich set of information structures and assume the
receiver’s action depends only on her posterior expectation of a scalar state variable.
Conjugate to the standard problem, our sender’s utility is linear in posterior the mean,
but may be nonlinear in probabilities. We geometrically characterize the sender’s opti-
mal commitment payoff and identify the corresponding optimal information structure.
When the state is continuously distributed, communication takes a monotone parti-
tional form. Our characterization admits a simple analysis of comparative statics—for
instance, we find that “grading on a curve” is a feature of optimal design. Finally, we
apply our analysis to several problems of economic interest including information design
in auctions and elections, as well as the design of equilibrium insurance contracts in the
face of the ‘favorite-longshot’ bias. (JEL D02, D30, D81, D82, D83)

1 Introduction

If competition authorities wish to promote competition and protect consumers, what ad-
vertising standards should they adopt? By contrast, if a monopoly platform wishes to raise
sellers’ profits what should it allow them to advertise? Can a lobbyist use information to shift
public opinion and thereby distort an election campaign? How should we expect competitive
insurance markets to look when agents hold the well-known ‘favorite-longshot’ bias?
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These are basic questions of distributional design. Yet, they introduce two kinds of
novelty: first, admitting the favorite-longshot bias involves a failure of expected utility.
Second, in many settings information design at a population level appears to be conducted
in an approximately i.i.d. way. Advertising rules are often applied to firms independently,
while news articles can induce different reactions across independent readers. Moreover—
perhaps due to a need to avoid conflicts of interest, regulatory scrutiny or other costs—sellers
frequently enjoy equal treatment under advertising rules; and to a degree, anonymity grants
the majority of readers with symmetric access to mass media outlets.1 In this paper we
study a class of problems that allows us to tractably address these kind of questions.

We study a model similar to—but distinct from—Bayesian persuasion. Developing the
persuasion analogy, consider the following setting: a sender (he) commits to provide a signal
to a receiver (she), (perhaps stochastically) mapping some state of the world into a message.
Following much of the current literature, we assume that the state is drawn from an interval
on the real line, and that the sender’s ex post payoff (i.e. after the message is observed)
depends only on the first moment of the receiver’s posterior distribution. We depart from
most of the literature by dropping the assumption that the sender is an expected utility
maximizer. In standard Bayesian persuasion problems, his payoff may be nonlinear in the
posterior mean, but is necessarily linear in the probabilities with which those posteriors are
induced. By contrast, we assume his payoff is linear in posteriors, but may be nonlinear
in probabilities; this nonlinearity is captured by a (probability) weighting function, ν :

[0, 1]→ R, defined on the rank (i.e., cumulative probability) of each outcome in the chosen
distribution. In this sense, our problem is conjugate to classic Bayesian persuasion.

Theorem 1 solves the sender’s problem, assuming the state is continuously distributed.2

While we make no restrictions on his choice of information structures beyond those implied
by Bayes’ rule, we find that optimal communication takes a very simple and natural form.
In particular, the sender’s problem can always be solved by monotone partitional communi-
cation. In a monotone partitional information structure, the sender commits to partition the
state into a countable collection of ‘pooling intervals’, and one residual set. Each interval is
assigned a unique message which identifies it; on the residual set, the sender simply reveals
the state. Hence, the receiver either learns the state exactly or an interval in which it lies,
and in equilibrium her beliefs are unambiguously increasing in the state.

We show that geometric tools reminiscent of those used in Bayesian persuasion identify
optimal communication and payoffs. Central to our analysis is the convexified weighting

1This is natural in offline contexts. Even online, targeted political ads—and the platforms that support
them—face increasing scrutiny. According to a YouGov poll conducted in October 2020, 68% (63%) of
Democrat (Republican)-leaning respondents support a ban on such targeting.

2In Appendix B, we extend our arguments to allow for discontinuities in the distribution of the state.
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function, ω—the largest convex function nowhere greater than ν. We show that every optimal
pooling interval is an interquantile range defined by a corresponding interval in the rank space
for which ω(p) < ν(p). Moreover, the sender’s optimal payoff is equal to that he would earn
if his weighting function were ω and he chose to reveal full information. To establish this,
we show the sender’s payoff from any feasible information structure is bounded by the full
information payoff under weighting ω, via stochastic dominance arguments. By appealing
to a linearity property of ω, we then verify that the optimal monotone partition attains the
bound.

Owing to the simplicity of optimal information structures, the model readily admits
comparative statics results. For example, we show that as the sender becomes more ‘risk
loving’ over posterior means, optimal pooling intervals contract (in the sense of set inclusion).
Moreover, as the geometries of ω and ν are independent of the distribution of the state, it is
easy to characterize how optimal communication varies with the latter. Most notably, the
optimal information structure “grades on a curve”, in that optimal pooling intervals shift and
scale in direct correspondence with rescaling of the state.

In section 4, we show how our model can be applied to study a natural class of i.i.d.
Bayesian persuasion problems. Here, the sender is an expected utility maximizer who faces
N independent state variables, about which he can provide information in an i.i.d. way.
Payoffs from an outcome may depend on that outcome’s rank among the draws. This is
a reasonably flexible class: for instance, it incorporates a sender who cares only about
maximizing the value of the highest draw, the second highest draw, the difference between
the two, or the median, among others. Moreover, it incorporates a range of economically
interesting applications, including advertising in oligopoly markets and media influence in
elections. To draw the connection to our model, we show that every such problem can be
cast as one of conjugate persuasion; on the other hand, every conjugate persuasion problem
is also the the (uniform) limit of a sequence of i.i.d. Bayesian persuasion games with rank-
dependent marginal utility. To illustrate the value of this connection, we show how Theorem
1 can be used to solve for optimal information in oligopolistic markets and competitive
elections and develop policy consequences for both large and small markets/electorates. In
both settings, we find that censorship of extreme outcomes is critical to optimal design.

In section 5, we develop a behavioral interpretation for the conjugate persuasion problem.
In particular, we show that conjugate persuasion applies to agents with a class of preferences
studied within cumulative prospect theory (Quiggin (1982); Yaari (1987); Tversky & Kah-
neman (1992)): several empirical studies have found behavioral patterns well-captured by
‘rank-dependent’ models with a weighting function which is first concave, and then convex.
For instance, it predicts Tversky & Kahneman (1992)’s “four-fold pattern”: subjects appear
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appear to systematically ‘overweight’ low probability events (appearing risk-loving/averse
for gambles on/against a “longshot”), and ‘underweight’ frequent events. We consider the
implications of these preferences for equilibrium insurance contracts in competitive markets.
While this is not an information design problem, we nevertheless show how it can be stud-
ied in our framework. We assume insurers are risk-neutral and find they offer only partial
insurance—pooling all risks below some threshold of the consumer’s wealth distribution, but
allowing her to retain the upside in sufficiently good times. We also describe how this frame-
work can be used to assess optimal income redistribution when a policymaker is concerned
about inequality, as measured using Lorenz curves. Finally, in section 6 we briefly describe
the implications of our analysis for Bayesian persuasion with heterogeneous priors.

The rest of the paper runs as follows. We briefly discuss the literature, before introducing
our model in 2. Section 3 provides our main theorem, and some comparative statics. Sections
4 through 6 show how the model applies to a variety of classic economic problems. Section
7 concludes. Most proofs are relegated to appendices.

Related Literature

Our work relates to the growing literature on persuasion and information design. In different
contexts, Aumann & Maschler (1995) and Kamenica & Gentzkow (2011) showed that, when
a sender can commit to an information structure his optimal payoff can be characterized
by his concavified utility function. Their finding applies to the sender’s utility defined on
the space of posterior distributions, where geometric analysis can become difficult beyond
settings with a limited number of states. Subsequently, the literature has focused on the case
where the sender cares only about the receiver’s posterior mean (see for example, Gentzkow
& Kamenica (2016), Kolotilin et al. (2017)). The methods of Kamenica & Gentzkow (2011)
do not generally apply in the space of posterior means; taking a dual approach Dworczak &
Martini (2019) show how to verify the optimality of candidate information structures. We
show conjugate persuasion is amenable to geometric analysis, even as the state space grows
large.

In a recent paper, Kleiner et al. (2021) characterize the extreme points of the (convex)
sets of distributions which constitute (i) a mean preserving contraction, or (ii) a mean
preserving spread, of some fixed, exogenous distribution. Most closely related to our paper
is concurrent work, Bergemann et al. (2021). In contrast to our direct argument, Bergemann
et al. (2021) show how the second characterization of Kleiner et al. (2021) can be ‘inverted’
to identify a result similar to our Theorem 1, in the context of a second-price auction.
Their results relate closely to the application we present in section 4.1. We identify a novel
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stochastic dominance argument for Theorem 1, and show how it extends to atoms in the
distribution of the state (see Appendix B). Moreover, we show how the conjugate persuasion
problem applies to a wider range of economically relevant design problems.

There has been much recent interest in partitional information structures—perhaps due
to their simplicity, tractability and practical relevance. Kolotilin et al. (2017), Dworczak
& Martini (2019), Mensch (2021), Kolotilin & Li (2021) and Best & Quigley (2021) identify
sufficient conditions under which (monotone) partitional information structures are optimal.
In a problem involving heterogeneous priors, Onuchic & Ray (2020) study optimal design
of monotone partitional signals. They show the best such partition can be characterized
by convexifying a function which represents their prior disagreement. We identify a new
argument for the optimality of monotone partitional communication, from which we also
find that “grading on a curve” is a feature of optimal communication.

In section 4, we apply our results to study information in oligopolistic markets and
in elections. In classic auction settings, Milgrom & Weber (1982) show a seller benefits
by revealing information to buyers, when her information and buyers’ values are affiliated.
Several papers consider the effects of information in oligopolistic markets, including Anderson
& Renault (2006); Johnson & Myatt (2006); Ivanov (2013); Boleslavsky et al. (2019). In
most of these papers, the choice of information is limited to a parametric class. Boleslavsky
et al. (2019) allow sellers with independently valued goods to advertise about their own
product in a rich way. When prices are set before information is revealed, they characterize
firms’ (symmetric) equilibrium advertising. We study a different, policy-oriented question,
characterizing the set of distributions of consumer and producer surplus attainable with i.i.d.
information.

Several papers have considered the effects of information on voting (for instance, Gershkov
& Szentes (2009); Duggan & Martinelli (2011); Anderson & McLaren (2012); Alonso &
Câmara (2016); Bardhi & Guo (2018)).3 In most of these papers, options under consideration
by voters are exogenous. We incorporate endogenous policy choice, in a Downsian election
model (Downs (1957)). Strömberg (2004) and Chan & Suen (2008, 2009) also consider
models with media coverage and endogenous party policies. In Strömberg (2004), the media
acts as a commitment device for making policy offers to special interest groups; in Chan &
Suen (2008, 2009), the media is informative, but signals are either of a binary threshold form
or cheap talk statements. We allow a media outlet to choose from a rich class of signals,
subject to an i.i.d. constraint which we view as a model of mass media.

3Gentzkow & Shapiro (2006) develop a related theory in which media bias for a candidate emerges from
an outlet’s desire to signal it has high quality information.
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2 Model

In Bayesian Persuasion problems, a sender (he) may commit to provide information to a
receiver (she) about a random variableX, drawn from a distribution F with bounded support
[x, x] ⊂ R. In the literature F is frequently taken to be continuous, and for the most part
we assume the same (unless otherwise stated). In what follows, we sometimes find it useful
to refer to the quantile function G−1(p) := inf{x ∈ [x, x] : p ≤ G(x)} associated with an
arbitrary distribution G on [x, x]; of course, G−1(p) is nondecreasing in p ∈ [0, 1]—the rank
of outcome G−1(p) in distribution G (i.e, the frequency with which X ≤ G−1(p)).

In these problems the sender commits to send information to a receiver via a choice
of experiment, which consists of signal space S and a measurable map π : [x, x] → ∆S,
where ∆S is the set of probability distributions on S. In an increasingly studied class of
Bayesian Persuasion problems, the sender is an expected utility maximizer with Bernoulli
utility u : [x, x] → R, a lower semicontinuous function defined on the receiver’s posterior
mean xs = E[X | s], where the expectation is taken with respect to beliefs induced by F
and the experiment π.4 As Gentzkow & Kamenica (2016) and Dworczak & Martini (2019)
show, this problem corresponds to choosing a distribution G to solve:5

max
G�coF

ˆ
u(x)dG(x). (1)

In problem (1), the sender’s objective is linear in probabilities but may be nonlinear in
the induced posterior mean. In this paper, we study a different class of problems where the
sender’s payoff is linear in the receiver’s posterior mean, but may be nonlinear in probabilities.
Specifically, we consider the problem

V (F, ν) = max
G�coF

xˆ

x

xdν(G(x)), (2)

where ν : [0, 1] → R is assumed to be a continuous function of bounded variation, and the
integral is taken to be Lebesgue-Stieltjes.6 We refer to the function ν as a (Yaari) weighting.

Several economic problems—persuasion and others—fall naturally into this class. For
concreteness, we briefly introduce a few of them below. Despite the functional form in (2),
in several of these applications the sender is an expected utility maximizer. In sections 4

4xs = E[X | s] is the Radon-Nikodym derivative associated with the sub σ-field generated by s.
5We write �co to represent the convex order : G �co F if any only if

´
u(x)dG(x) ≤

´
u(x)dF (x) for all

convex functions u.
6As continuity naturally arises in all the applications we develop in sections 4 and 5, we maintain that

assumption throughout.
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and 5, we show how each example maps to conjugate persuasion, solve for the corresponding
optimal designs and discuss their economic implications.

Example 1. (Order statistics and i.i.d. information design)
Each of N receivers has a value Xi, distributed i.i.d. on [x, x] according to F . Suppose

that the sender can provide each receiver with information about her own value, and that
information structures must be identical across receivers. Then his choice corresponds to
selecting an i.i.d. distribution G �co F .

The sender is an expected utility maximizer, whose Bernoulli utility u : [x, x]N → R
depends on the order statistics associated with N i.i.d. draws from G. Letting x(k) be the
kth highest order statistic, and αk ∈ R the sender’s associated marginal utility for the kth

highest outcome, his payoff is:

u(x1, . . . , xn) =
N∑
k=1

αkx
(k).

The sender chooses G to maximize his expected utility. As we elaborate in section 4, this
information design problem arises naturally in several economically interesting environments,
including auctions and elections.

Example 2. (A sender with non-expected utility)
Consider a sender whose preferences violate the standard independence axiom of EU

theory. Rather, his preferences satisfy ‘dual independence’ (Yaari, 1987) (see section 5).
Then, (Yaari, 1987) shows there exists a continuous, nondecreasing function f : [0, 1] → R
such that his preferences can be described over lotteries can be described by the integral

ˆ
f(G(x))dx.

We refer to such preferences as Yaari utilities. With dual independence in place of the
standard independence axiom, problem (2) is an otherwise standard persuasion problem.

Example 3. (Competitive insurance with a Yaari consumer)
A consumer with Yaari utility faces an uncertain income X ∼ F . Two competitive, risk-

neutral insurance companies may simultaneously offer the consumer an insurance contract,
which specifies an upfront premium in exchange for a payment Yi(X) in state X, where
i = 1, 2 indexes insurers. Insurer i may only offer payment profiles Yi(X) that constitute a
mean preserving contraction of X. That is, the insurer can only offer random variables which
“hedge” the consumer’s income risk.7 The consumer chooses her most preferred contract

7While this is a natural feature of competitive insurance contracts, we nonetheless show how our frame-
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among those offered. We are interested in equilibrium contracts and the consumer’s final
utility as a function of her risk preferences.

Example 4. (Income redistribution with relative inequality aversion)
Faced with a continuum of citizens with income distribution F , a government considers

budget-balanced redistribution via taxation. It is perhaps natural to suppose that a govern-
ment might measure the degree of inequality by the population Gini coefficient,

´ 1
0
L(p)dp,

where L(p) =
´ p
0 G
−1(p)dp´ 1

0 G
−1(p)dp

is the value of the Lorenz curve at the pth quantile of the income
distribution. If the government’s objective were to minimize the degree of inequality as mea-
sured by the Gini, it would of course choose a completely flat distribution. More permissive
preferences for redistribution arise from the generalized Gini coefficient:

1ˆ

0

γ(p)L(p)dp, (3)

3 The Main Result

In this section we present our main result, which establishes existence of a solution to prob-
lem (2) and characterizes both the sender’s optimal payoff and the structure of optimal
persuasion.

To aid our discussion, we first briefly observe a connection between problem (2) and
Dworczak & Martini (2019)’s solution method to (1). Let C(u) be the set of convex functions
on [x, x] which pointwise dominate u: for any v ∈ C(u), v(x) ≥ u(x), for all x ∈ [x, x]. Then
for any v ∈ C(u), (1) is bounded above by

´
vdF . To see this, suppose G? solves (1). Then

ˆ
vdF ≥

ˆ
vdG? ≥

ˆ
udG?.

In other words,

min
v∈C(u)

ˆ
vdF ≥ max

G�coF

ˆ
udG

is the dual problem corresponding to (1). Under some regularity conditions, Dworczak &
Martini (2019) show these problems in fact attain the same value. Of course, to characterize
the value of the dual, one still needs to identify the function v which minimizes

´
vdF .

In a similar way, we can identify a natural upper bound on problem (2). To ease the
discussion, suppose that ν is an increasing function with ν(0) = 0, ν(1) = 1, so that ν ◦ G

work also allows for ‘fully relaxed’ contract offers (such as opportunities for gambling, which need not have
0 expected return) in section 5.
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can be interpreted as a probability measure on [x, x]. Let C(ν) be the set of convex functions
w which satisfy w(p) ≤ ν(p), for all p ∈ [0, 1], and with equality at p ∈ {0, 1}. To extend
the analogy, suppose for a moment that each w ∈ C(v) is also increasing. Then, for any
distribution G, w ◦G first order stochastically dominates ν ◦G on [x, x]. Hence,

ˆ
xd(w ◦G)(x) ≥

ˆ
xd(ν ◦G)(x).

Moreover, a sender with convex weighting function w is risk-loving: G �co F implies´
xdw◦F (x) ≥

´
xdw◦G(x) (see, for instance, Yaari (1987)). To see some intuition, suppose

w were differentiable. Then, by a change-of-variables, the sender’s objective is
´
x(p)w′(p)dp,

where x(p) = G−1(p). With a convex weighting function, the ‘marginal utility of income’ w′

is increasing in the quantile and hence, pooling is never desirable—to do so would sacrifice
outcomes at the (more valuable) top of the distribution to support those at the bottom.

As we show in the Appendix (see Lemma 4), this basic argument does not rely on ν or
w being increasing. Thus, (2) is bounded above by

min
ω∈C(u)

ˆ
xdw(F ). (4)

In contrast to regular Bayesian persuasion, the solution to the dual problem is remarkably
simple. The set C(µ) has a (pointwise) greatest member, the convexification ω : [0, 1]→ R
of ν. Repeating the argument above, the convexification must in fact solve (4).

Our main result solves the conjugate persuasion problem by showing that there exists
an information structure which attains the bound (4). We call an information structure
monotone partitional if there exists a set of disjoint, open intervals J = {Jk}k∈K , Jk =

(xk, x
′
k) ⊂ [x, x], for some countable index set K, and a (monotone) mapping π : [x, x] →

[x, x] such that (i) if X ∈ Jk for some k ∈ K then π(X) = EF [X | X ∈ Jk], and (ii)
π(X) = X, otherwise. Note that we label signals by their induced posterior means (hence,
they interpret as recommended beliefs). Monotone partitional information structures have
two properties worth mentioning: they deterministically map the state into signals, and when
multiple states are pooled into a single signal, pooling is always between ‘adjacent’ states.
Associated with any monotone partitional information structure is its induced distribution
over posterior means, which satisfies:

G(x) =


F (x), if x /∈

⋃
k∈K Jk

F (xk), if xk < x < EF [X | X ∈ Jk]

F (x′k), if EF [X | X ∈ Jk] ≤ x < x′k.
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G concentrates all the mass from F at its conditional mean EF [X | X ∈ Jk] on any pooling
interval Jk, and leaves F unchanged otherwise.

Let I be the subset of [0, 1] on which ν(p) > ω(p).8 As ν and ω are continuous, I is
the countable union of disjoint open intervals I?k = (pk, p

′
k), where pk < p′k for k in some

index set K?. Let J?k = (F−1(pk), F
−1(p′k)) be the interquantile range (a subset of [x, x])

corresponding to I?k , and π? the monotone partitional information structure that pairs with
this convexification in the obvious way: π? pools all values X ∈ J?k into a single signal
µ?k = E[X | X ∈ J?k ], and for X /∈ ∪k∈K?J?k fully reveals the state.

Theorem 1. A solution to problem (2) exists. The sender’s optimal payoff V (F, ν) is given
by

V (F, ν) =

ˆ
xdω(F ).

Moreover, the monotone partitional information structure π?—with associated distribution
G?—solves (2).

Proof. We need only argue that G? attains
´
xdω(F ). Since G? is generated by π?, clearly

G? �co F . Note that on
(
∪k J

?

k

)c, G? = F and ν = ω everywhere. Hence

ˆ
(
∪kJ?

k

)c xdν(G?) =

ˆ
(
∪kJ?

k

)c xdν(F ) =

ˆ
(
∪kJ?

k

)c xdω(G?).

Now, consider any interval J?k = (F−1(pk), F
−1(p′k)). As (G?)−1(p) = µ?k on J?k we have´

J?
k
xdν(G?) = µ?k ·

´
J?
k
dν(G?). As is well-known, ω is linear in p over each I?k ⊂ [0, 1]. Hence,

there exists a constant δ such that
ˆ

J?
k

xdω(F ) = δ

ˆ

J?
k

xdF, and
ˆ

J?
k

dω(F ) = δ

ˆ

J?
k

dF,

or
´
J?
k
xdω(F ) =

´
J?
k
xdF´

J?
k
dF

´
J?
k
dω(F ) = µ?k

´
J?
k
dω(F ). Now,

´
J?
k
dν(G?) = ν(G?(F−1(p′k)))− ν(G?(F−1(pk))) = ω(p′k)− ω(pk)

where the second equality follows because ν = ω and G? = F at the endpoints F−1(p′k),
F−1(pk). Hence, we conclude that

´
xdν(G?) =

´
xdω(F ).

8As is well-known, ω is linear on any interval over which ν > ω. Hence, since by assumption ν has
bounded variation, so too does ω.
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Figure 1: An illustration of Theorem 1. Left panel: weighting function ν and its convexi-
fication identify pooling intervals in rank space. Right panel: implied optimal information
structure.

Theorem 1 shows that geometric arguments reminiscent of Kamenica & Gentzkow (2011)
can be applied to solve conjugate persuasion problems. In particular, the sender’s optimal
payoff can be found by evaluating payoffs using full information and the convexified weighting
function.9 Moreover, despite making no such restrictions at the outset, we find that optimal
communication takes a very natural form: (2) is solved by a monotone partitional information
structure, whose pooling intervals correspond exactly to the relevant interquantile regions
on which ω and ν differ. Of course, these regions can be identified geometrically. For
example, when ν is convex, then ν = ω everywhere and full information is optimal; when ν
is strictly concave, ω is the chord connecting (0, ν(0)) to (1, ν(1)), and hence ‘no information’
is optimal.

Theorem 1 applies to environments where payoffs depend on posterior means. In many
economic problems the expected state is the variable of interest, and hence a large body of
research—in persuasion and beyond—has grown to address them.10 Dworczak & Martini
(2019) provide a verification method for establishing optimality in such Bayesian persuasion
problems. Theorem 1 gives a simple method for solving the information design problem (2).

Theorem 1 applies when F is continuous. However, the same methods can be used to
identify optimal information structures even when F admits discontinuities. In Appendix
B, we identify the optimal information structures in this more general setting. In this case,
some mixing may be required to accommodate the possibility of atoms at the endpoints
of pooling intervals. Hence, optimal information structures need not be partitional in this

9In Kamenica & Gentzkow (2011), optimal payoffs can be found by applying ‘no information’ to a con-
cavified Bernoulli utility.

10For a few examples, see Crawford & Sobel (1982); Perloff & Salop (1985); Chakraborty & Harbaugh
(2010); Gentzkow & Kamenica (2016); Kolotilin et al. (2017); Dworczak & Martini (2019).
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case.11 Yet, as we discuss in the appendix, they continue to be monotone in a strong sense.12

Comparative statics

Given the characterization of optimality identified by Theorem 1, comparative statics results
on optimal communication are relatively easy to describe. First, note that the optimal pool-
ing intervals in π? depend only on the interquantile ranges I?i over which ω < ν. These sets
are independent of F . Hence, the optimal pooling intervals always vary to reflect the appro-
priate quantiles F−1(J?i ) of the full information distribution. An immediate consequence is
that in conjugate persuasion, grading ‘on a curve’ is always optimal:

Corollary 1. Suppose F̃ (x) = F (x−b
a

), a > 0. Then the sender’s optimal pooling regions
under distribution F̃ satisfy:

J?i (F̃ ) = a(J?i (F ) + b).

It is natural to ask how optimal communication depends on the sender’s preferences. As
Yaari (1987) shows, the sender becomes more risk-loving as ν becomes more convex. The
next proposition verifies that as this happens, he shares more information:

Proposition 1. Let ρ : R → R be an increasing convex function. Then the optimal infor-
mation structure with objective ρ ◦ ν is less (Blackwell) informative than that under ν.

Consider two such weighting functions, ν and ν̃ = ρ ◦ ν. Since monotone partitions are
always optimal, Proposition 1 says that optimal pooling intervals, as a function of preferences,
are ordered by set inclusion: for each J?i (ν̃) there is some J?k (ν) such that J?i (ν̃) ⊂ J?k (ν).
Indeed, this follows immediately from the proof, which shows that the regions on which
ω̃ := vex(ν̃) < ν̃ are contained in the intervals on which ω < ν.

Extreme Censorship

Define the class of convex-concave functions ν : [0, 1] → R as those for which there exists a
p ∈ (0, 1) such that ν is convex on [0, p] and concave on [p, 1]. We define the class of concave-
convex functions analogously. As will become apparent from our applications, functions
from these classes arise naturally in a variety of economically interesting applications. The
convexification of such functions is particularly simple to find and describe:

11See section 4 for a simple example of this, in the context of insurance markets.
12For instance, an implication of the optimal information structure is that the conditional distributions

over posterior means (given X) are ordered by first-order stochastic dominance.

12



Proposition 2. Suppose ν is convex on [0, p] and concave on [p, 1] for some p ∈ (0, 1). Then
there exists a unique pc ∈ [0, p] such that

ω(p) =

ν(p) , 0 ≤ p ≤ pc(
1−p
1−pc

)
ν(pc) +

(
p−pc
1−pc

)
ν(1) , pc ≤ p ≤ 1.

If ν is differentiable, then pc satisfies

ν ′(pc) ≥ ν(1)− ν(pc)

1− pc
, (5)

holding with equality iff pc > 0. If pc is interior, it is the unique solution to ν ′(p) = ν(1)−ν(p)
1−p .

Proposition 2 is stated for convex-concave functions, but extends to concave-convex func-
tions in the obvious way. We define two classes of ‘extreme censorship’ policies as follows:
right censorship is an information structure which is characterized by a threshold xr ∈ [x, x)

such that (i) if Xi < xr, then Xi is fully revealed and (ii) if Xi ∈ [xr, x] then no signal is
sent. Similarly, left censorship is characterized by a threshold xl ∈ (x, x] such that (i) if
Xi > xl, then Xi is fully revealed and (ii) if Xi ∈ [x, xl] then no signal is sent. We call a right
censorship (left-censorship) policy informative if xr < x (xl > x).13 With ν convex-concave
or concave-convex, Theorem 1 implies censoring extreme information is always optimal:

Corollary 2. If ν is convex-concave then a right censorship policy is optimal. If ν is concave-
convex, then left censorship is optimal.

In the next three sections, we show how our results apply in three kinds of economic
problem. Section 4 shows how we can reframe a class of i.i.d. Bayesian persuasion problems—
similar to Example 1—in terms of conjugate persuasion. In section 5, we connect problem
(2) to a behavioral model of rank-dependent preferences, and assess the consequences of such
preferences for equilibrium insurance and optimal income redistribution. Section 6 briefly
discusses the implications of our analysis for Bayesian persuasion with heterogeneous priors.

4 Order Statistics and Persuasion of Multiple Receivers

In Example 1, the sender’s task was to solve the following i.i.d. Bayesian Persuasion problem

max
G�coF

E[u(x1, . . . , xN)] =
N∑
k=1

αkEG[x(k)], (6)

13Note the definition of censorship does never includes full information when F is continuous.
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where EG[x(k)] is the expected value of the kth highest order statistic from N i.i.d. draws
from a distribution G. In problem (6) the sender is an expected utility maximizer, whose
preferences over xi may depend on their relative position among the N draws. Still, it can
be expressed in the form (2). To see this, recall that the kth highest order statistic from N

i.i.d. draws of distribution G has c.d.f.

Pr(x(k) ≤ y) = βN−k+1,k(G(y)) = N

(
N − 1

k − 1

) G(y)ˆ

0

GN−k(1−G)k−1dG,

where βN−k+1,k is a beta distribution with parameters N − k + 1 and k. Hence, EG[x(k)] =´
xdβN−k+1,k(G) and the sender’s problem can be written

max
G�coF

ˆ
xdβ̃N(G), (7)

a conjugate persuasion problem with β̃N =
∑
αkβN−k+1,k. Since each βN−k+1,k is obviously

continuous and increasing, the conditions of Theorem 1 apply to β̃N . Let the solution to
problem (7)—as described by Theorem 1—be G?

N .
Any i.i.d. Bayesian Persuasion problem in which the sender’s marginal utility over out-

comes is rank-dependent is therefore expressible as a conjugate persuasion problem. On the
other hand, any conjugate persuasion problem is the uniform limit of some such sequence of
i.i.d. Bayesian Persuasion problems:

Theorem 2. Suppose ν is continuous. Then there exists a sequence of functions β̃N : [0, 1]→
R, N = 1, 2, . . . , such that β̃N converges uniformly to ν, and

ˆ
xdβ̃N(G̃N)→

ˆ
xdν(G?).

Moreover, if G? uniquely solves (2) (up to a set of measure 0), then G̃N converges weakly to
G?.

To prove the result, for each n in the sequence we assign weights αnk = ν(1− k−1
n

)−ν(1− k
n
).

As a result, each β̃n can be expressed as a linear combination of Bernstein basis polynomi-
als, from which uniform convergence to ν follows naturally. As the proof shows, uniform
convergence guarantees the G̃N have an upper hemicontinuity property (in particular, there
is always a subsequence of (G̃N) which converges weakly to a solution to (2)), and when G?

is unique G̃N converges weakly to it.14

14When G? is not unique but F has full support, any weakly convergent subsequence of (G̃N ) limits to a
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Theorem 2 shows a close connection between conjugate persuasion and i.i.d. Bayesian
persuasion with rank-based utility. On one hand, this connection allows us to solve i.i.d.
persuasion problems with the methods of Theorem 1. On the other, it illustrates that
problem (6) captures a rich set of incentives: any pattern of monotone partitional disclosures
is approximately optimal in some such problem.15

Moreover, it provides a set of sufficient conditions under which a sequence of i.i.d. persua-
sion problems has nice convergence properties, as the number of draws grows large. Indeed,
the uniform convergence of β̃N is important for the usefulness of the limit as a guide to op-
timal information in large societies; pointwise convergence is insufficient.16 By establishing
natural conditions under which a sequence of i.i.d. Bayesian persuasion problems converge,
Theorem 2 allows us to identify robust, approximately optimal policies for large i.i.d. per-
suasion problems. This can be useful: as our examples below illustrate, it can offer a simple
guide to optimal policy in large societies—even when solving for the precise optimum in fixed
societies can be tricky.

In the next two subsections, we apply our results to study information design in two
classic settings: oligopoly markets and elections.

4.1 Oligopoly, advertising and information design

We adapt the classic Perloff & Salop (1985) model of differentiated products oligopoly to
study the implications of information design for the distribution of consumer and producer
surplus. A buyer with quasilinear utility has unit demand for a good. There are N ≥ 3

sellers in the market, who each produce a heterogenous variety at a marginal cost normalized
to 0.17 The buyer’s willingness to pay Xn for each item n = 1, . . . , N is i.i.d. across sellers,
distributed according to a continuous distribution function F on bounded support [0, x],
where x > 0. The buyer is initially uninformed of her own value for each good; hence, there
is a role for advertising.

We assume seller n can costlessly provide information about his own good, modeled as a
choice of information structure πn : Xn → ∆Sn, where Sn is his signal space. As before, this

monotone partitional Ĝ, whose pooling intervals include (i) all intervals {J?
i }i∈I , (ii) possibly others over

which ω is linear ; any such Ĝ differs from G? in a trivial way only. Details available on request.
15Pooling at arbitrary intervals Ii = [pi, p

′
i] ∈ (0, 1), i ∈ I ⊂ N+, is optimal for the following choice of ν.

Let ν0(p) = p2, and νi(q) = min{ν0(pi)+ 2p′i(q− pi), ν0(p′i)+ 2pi(q− p′i)}. Then put ν(p) = ν0(p), p /∈
⋃
I Ii,

and ν(p) = νi(p) for p ∈ Ii.
16One can find sequences of weighting functions which converge pointwise to some limit, but whose cor-

responding optimal information structures do not converge to a solution of the limiting weighting function.
See section 4.1.

17We omit the case N = 2—which is trivial but requires slightly different arguments—for the sake of
brevity.
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corresponds to a choice of distribution Hn over the posterior expectation of Xn satisfying
Hn �co F . We refer to Hn as the seller’s advertising strategy. Notice that we assume
sellers can only provide information about their own good. Hence, the buyer’s equilibrium
information inherits the independence of {Xn}Nn=1.

We are interested in a policy question: how can information affect the surplus and dis-
tribution of gains in oligopolistic markets? To address this, we introduce a policymaker who
can impose constraints on seller’s advertising strategies. In particular, he can choose an
upper limit G �co F on the information sellers can provide, which we assume to be symmet-
ric across sellers.18,19 Subject to the constraint G, each seller’s set of available advertising
strategies is {Hn : Hn �co G}.

The timing of the game is as follows: first, the policymaker chooses G. Then sellers
simultaneously commit to advertising strategies, which are observed by the buyer. Each Hn

induces a draw xn of the buyer’s expected value for item n, also observed by the buyer and
by seller n; rival sellers do not learn xn.20 Sellers then compete in prices, which we model as
a descending auction.

Let CS be the buyer’s ex ante expected utility, and correspondingly PS sellers’ joint
profits. To study the payoffs feasible with i.i.d. information, we endow the policymaker with
payoffs αBCS + αSPS, where αB, αS are real constants. Of course, this accommodates a
policymaker who wishes to maximize (or minimize) consumer surplus, producer surplus and
aggregate surplus (αB = αS = 1), among others. Note that this flexibility allows for multiple
interpretations of the policymaker.21

We now argue that the policymaker’s problem can be written as a special case of problem
(2). If seller n offers an item worth xn at price pn, then the buyer’s net utility from item n

is sn = xn − pn. Clearly, the buyer chooses item n if and only if sn > maxm 6=n sm, and the
winning seller receives pn = xn − sn.22 Hence, we can consider the price-setting subgame as
a second-price auction in offers of sn, treating the each seller ‘as if’ he holds value xn ∼ Hn

for winning. Using this analogy, it is easy to characterize sellers’ equilibrium advertising
strategies:

18One might imagine other forms of constraint would be natural; for instance, the platform could impose
a minimum bound on information. As we will see, such a constraint would not be binding.

19The symmetry can be motivated by fair treatment considerations or a desire to avoid any perception of
favoritism on the part of the policymaker.

20In Perloff & Salop (1985), sellers have no information on how much the buyer values their product. We
have in mind settings where the seller can observe its customers’ interactions with its advertising and thereby
learn the ‘match quality’ between customer and good.

21Examples include: regulatory/consumer protection agency, a platform through which advertisements
can be posted or simply a tool for comparative statics and welfare analysis of exogenous information.

22In this setting, the possibility of ties has no consequence for equilibrium strategies and payoffs—and so
we ignore them here.
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Lemma 1. Fix G �co F . Maximal information, Hn = G, is optimal for each seller.

The intuition behind Lemma 1 is straightforward. The pricing subgame is a second-price
auction, and advertising gives the seller more information about his value xn for winning.
Since advertising is costless and not observed by rival sellers, this can never be harmful.
Moreover, it strictly improves his expected utility when his bid varies with his type.

By familiar arguments, the consumer’s surplus is equal to CS = EG[x(N−1)] in equi-
librium. Moreover, since the most valuable item is always purchased, aggregate surplus is
EG[x(N)] and accordingly joint profits are PS = EG[x(N)]− EG[x(N−1)].

Hence, the policymaker’s objective is to maximize the expected weighted sum of the
two highest order statistics. From the discussion of the previous section, the policymaker’s
problem is therefore a conjugate persuasion problem:

Lemma 2. Given equilibrium behavior of buyer and sellers, the policymaker’s problem is

max
G�coF

ˆ
xdβ̃N(G), (8)

where β̃N = (αB − αS)β(N−1,2) + αSβN,1.

We can now apply Theorem 1 to characterize the scope for advertising to generate sur-
pluses for both sides of an oligopolistic market. We write

E :=
{

(CS, PS) : ∃G �co F such that CS = EG[x(N−1)], PS = EG[x(N)]− EG[x(N−1)]
}

for the set of equilibrium payoff pairs attainable with some information structure G. Let r =
αS

αB
represent the relative weight the policymaker places on profits (which may be negative).

Proposition 3. E is compact and convex. Hence, its extreme points are characterized by
the solutions to (8), which are extreme censorship policies for all αB, αS. When αB > 0,
G? is (i) a left-censorship policy, for r > 1; (ii) fully informative, G? = F , for r ∈ [1

2
, 1];

(iii) a right-censorship policy, for r < 1
2
. As r ↓ 1 or r ↑ 1

2
, G? becomes (Blackwell) more

informative. When αB < 0, G? is (i) completely uninformative for r > 1
n
. Otherwise,

left-censorship is optimal. As r ↑ 1
n
, G? becomes less (Blackwell) informative.

Proposition 3 shows that extreme censorship policies play an important role in distribut-
ing gains from trade between buyers and sellers in oligopolistic markets.23 Indeed, any
feasible pair (CS, PS) can be attained by a convex combination of such information struc-
tures. Moreover, the maximal payoffs in E are all attainable with some extreme censorship

23It is easy to verify that either (i) full or (ii) no information are always optimal for N = 2.
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policy. When the policymaker’s payoff increases in both CS and PS, there is a range of
parameters for which he simply prefers full information. In particular, this occurs whenever
he has a mild bias towards the buyer (r ∈ [1

2
, 1]). The full information outcome is obviously

Pareto efficient; indeed, total surplus is E[x(1)] =
´
xdβN,1(G), where βN,1 is strictly convex.

Interestingly, this implies that E is kinked at the full information payoffs.
However, beyond this point, all other values on the maximal frontier of E—the set

{(CS, PS) ∈ E : @(CS ′, PS ′) ∈ E s.t. (CS, PS) < (CS ′, PS ′)}—are necessarily inefficient.
Indeed, when αB, αS ≥ 0 and r /∈ [1

2
, 1] the policymaker optimally sacrifices aggregate sur-

plus in order to skew the distribution of the surplus to his preferred side of the market.
If the policymaker puts more emphasis on profits (r > 1) then left censorship is optimal.
Conversely, if he emphasizes consumer surplus (r < 1

2
), then right censorship is best.

To develop some intuition, we briefly discuss two special cases. Let G?
B be the consumer

surplus-maximizing information structure, and analogously define G?
S for the case of joint

profits. Proposition 3 implies the consumer prefers right-censorship:

Corollary 3. CS is maximized by a right-censorship policy. As N increases, G?
B becomes

(Blackwell) more informative and as N → ∞, the buyer’s value for an arbitrary item n is
censored with probability approaching 0.

Right censorship favors the consumer by increasing the expected value of the second
order statistic, pooling values likely to be second best with those likely to be best. While
this reduces the overall surplus from trade relative to full information the buyer is more
than compensated by the lower prices that reduced differentiation between the best sellers
brings about. However, more censorship is not always better—if the censorship threshold is
set too low, the second-best value is also pooled with those much lower. Here, the costs of
inefficient misallocation more than offset the reduction in prices. In the appendix, we apply
Proposition 2 to prove that the optimal censorship threshold increases with N . As N grows,
the values of the “top two” items are likely to fall further into the right of the distribution.
To benefit from optimal pooling, the censorship threshold must also move right.

By contrast, left-censorship benefits sellers:

Corollary 4. PS is maximized by a left-censorship policy. G?
S becomes (Blackwell) less

informative. As N → ∞, the buyer’s value for any item n is censored with probability
approaching 1.

Pooling sufficiently low values weakens the expected competition faced by the seller with
the best good. To see why, consider the case where only one item exceeds a censorship
threshold. If the seller knew this, he would be in a strong bargaining position: the buyer’s
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outside option would be the mean value among the other items, rather than the highest
value among them. On the other hand, if another seller’s item also exceeds the threshold this
advantage would be diminished. Applying Proposition 2 again, we show that as N increases
this trade-off pushes towards greater censorship: with many sellers the policymaker can set
a high threshold, set so that on average one seller (with a product close to the maximum
value, x) exceeds it.

Finally, we discuss some efficiency implications of these advertising standards forN →∞,
which are also identified in Bergemann et al. (2021):

Corollary 5. As N → ∞, maximal consumer surplus approaches x. Maximum producer
surplus approaches ((1− 2e−1) · z, e−1 · z), where z = x− EF [X].

Of course, when advertising standards are designed to maximize consumer surplus, equi-
librium payoffs must converge to an efficient outcome in which the consumer extracts all
the surplus, x. After all, the policymaker could always allow full information. For N
large, the probability that at least two sellers have a value close to x approaches 1, so
that EF [x(2)]→ x.24

However, advertising standards which favor sellers are bound to sacrifice surplus. To
maximize joint profits, we show in the appendix that profit-maximizing standards censor all
realizations of Xn below the

(
N−2
N−1

)
th quantile of F . As N → ∞, the probability that any

seller’s product avoids censorship is therefore 1
N−1 and the overall number of such ‘successes’

converges to a Poisson distribution with mean 1. Moreover as the censorship threshold
approaches x in the limit, an item has value EF [X] if it is censored and x otherwise. As a
result, the expected gains from trade are (1−e−1)EF [X]+e−1x = EF [X]+(1−e−1)z, where
e−1 is the probability of no success under the Poisson distribution. Similarly, equilibrium
joint profits—which depend on the difference x(N) − x(N−1)—are e−1 · (x − EF [X]), where
here e−1 is the probability that exactly one seller’s item exceeds the censorship threshold.

Interestingly, joint profit maximization necessitates sacrificing e−1z of surplus — approx-
imately 1

3
of the difference between the full information and no information outcomes. While

censorship is extremely likely for an individual seller, the threshold is calibrated so that in
expectation a single item exceeds it. In this event, such a seller enjoys the market power
associated with having a good worth more than competing items. However, with the re-
striction to i.i.d. advertising, these standards must also accept a probability of e−1 that all
sellers’ products fail to meet the threshold and the subsequent inefficiency that arises.

Finally, we briefly on remark the joint profit maximization problem, with reference to
Theorem 2. It is easy to verify that, as N → ∞, βN,1 − βN−1,2 converges pointwise to 0.

24Bergemann et al. (2021) consider the case x = ∞. Here, full information does not approximate the
optimal information structure if F has ‘fat tails’.
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One might be tempted to conclude that this implies that joint profits necessarily converge
to 0 irrespective of information. However, as Corollary 5 shows, this is not the case. The
reason for the discrepancy is that the convergence of βN,1 − βN−1,2 is not uniform. In light
of Theorem 2, it is not surprising that the approximation fails in this case.

4.2 Media and Electoral Influence

Consider an election in which two office-motivated politicians compete for the votes of 2N+1

voters, N ∈ N+. Before the vote, each politician j ∈ {1, 2} commits to a policy platform,
a choice of some level of public good provision, aj ∈ [x, x]. Voters have independent values
for the public good, each voting for the candidate whose platform she prefers. Specifically,
voter n’s utility depends on the implemented policy a and her type xn ∼ F as follows:

un(a, xn) = −(a− xn)2.

That is, each voter has a quadratic loss function over the policy choice, with her ideal policy
being xn. To ease exposition, we again assume F is continuous on [x, x].

Voters are initially uninformed about the costs and benefits surrounding this policy issue,
and hence do not observe their own xn (or anyone else’s). However, before politicians commit
to their respective choices of a, a biased lobbyist (he) can provide voters with information.
This information maps each buyer’s value into a signal.25 We assume the lobbyist is not
able to individually identify and target particular voters to receive different information
structures. In other words, he must choose symmetric information structures.26

Let x? denote the policy implemented in equilibrium. We consider two forms of lob-
byist bias. A lobbyist is right-biased if he wishes to maximize E[x?], regardless of voters’
preferences. He is left-biased if he wishes to minimize the expected policy.

Proposition 4. The lobbyist can influence the election; that is, EG[x?] is not independent
of G. A right-biased lobbyist optimally influences the election via an informative right-
censorship policy. A left-biased lobbyist optimally employs informative left-censorship. For
each voter, censorship occurs with a probability of at least 1

2
, regardless of N .

25As voters are assumed to vote their preference, it does not matter whether they can observe each others’
signals. However, politicians are able to see the signals. This is appropriate where, for instance, campaigns
conduct private polls of voters.

26One could interpret symmetry here in terms of a public campaign which is designed to reveal (perhaps
coarsely) to each individual their own preferences. Symmetry then corresponds to the assumption that any
two agents with the same type respond the same way to the news. Of course, in some settings symmetry is
less appropriate. For instance, one might expect such targeting is possible via social media; our results are
therefore better viewed in the context of traditional mass media.
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In this setting, the median voter theorem applies to policy offers. As a result, a right-
biased lobbyist’s problem is simply to maximize the expected value of the median, EG[x(N+1)].
This is a conjugate persuasion problem, with weighting function ν = βN,N , which is convex-
concave for any N . Moreover, βN,N is strictly concave on [0, 1

2
] and strictly convex on [1

2
, 1].

From Proposition 2, we can conclude that right-censorship is optimal, with threshold located
at some rank pc of F satisfying pc ∈ (0, 1

2
). In particular, the optimal threshold is interior, so

that it is optimal for the lobbyist to provide at least some information. Still, information is
withheld from voters with probability exceeding 1

2
. In contrast to the oligopoly advertising

problem, in elections partial censorship remains an important tool even in the limit of large
populations. In the Appendix, we further prove the following result for N →∞:

Proposition 5. As the number of voters increases, the lobbyist provides more information.
As N →∞, each voter’s true value is censored with probability 1

2
.

Does media coverage influence society, or simply reflect it? Our results are consistent
with both perspectives. Taking F as given, Proposition 4 shows that the media can influence
elections. However, Corollary 1 shows that as society’s preferences move to the right (left)—
for example, if F is translated—then the lobbyist’s censorship threshold moves in sympathy.

5 Persuasion and non-Expected Utility

Conjugate persuasion problems also arise in settings where agents’ risk preferences violate
the independence axiom (IIA) of EU theory. For instance, the objective function in (2) arises
in models of rank-dependent utility (Quiggin (1982), Yaari (1987)), as well as in prospect
theory (Kahneman & Tversky (1979), Tversky & Kahneman (1992)). These models have
been able to rationalize several empirical puzzles, including the common ratio effect (Allais
(1953), Kahneman & Tversky (1979)) and the favorite-longshot bias (Griffith (1949)), as
well as to separate risk preferences from assumptions on how utility varies with income
(Yaari (1987)). Moreover, they provide a foundation for inequality preferences that can be
represented by Gini coefficients (Dorfman (1979))—which cannot be achieved in the EU
framework (Newbery (1970)).

To fix ideas, we briefly connect our problem to the rank-dependent approach of Yaari
(1987). Consider a sender whose preferences over lotteries are determined entirely by the
distribution over outcomes in [x, x]. Assume his preferences are complete, transitive, re-
flexive and continuous. In place of IIA, Yaari (1987) adopts the alternative axiom of dual
independence: where independence is taken with respect to mixtures over probabilities of
each outcome, dual independence is taken with respect to mixing of the quantile functions.
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Yaari’s axiom can be described as follows. Consider two strictly increasing, continuous
distributions F , G on [x, x], and suppose the sender prefers F over G.27 For a third, irrelevant
distribution H and some weight α ∈ (0, 1), the mixture αF � (1 − α)H generates outcome
αF−1(p) +H−1(p) as its pth quantile:

αF � (1− α)H :=
(
αF−1(p) +H−1(p)

)−1
. (9)

In this notation, dual independence can be stated as:

Axiom 1. (Dual independence: Yaari (1987)) If F ≺ G then αF�(1−α)H ≺ αG�(1−α)H

for all α ∈ (0, 1) and distributions H.

Under Axiom 1, preferences can be represented by Yaari utilities (Yaari (1987)). A slight
rewriting shows that (2) can be considered a persuasion problem in which the sender’s risk
preferences obey Axiom 1:

Theorem 3. Suppose the sender’s preferences � over distributions on [x, x] are complete,
transitive, reflexive, continuous and obey Axiom 1. Then there exists a continuous, non-
decreasing function ν[0, 1] :→ R such that

ˆ
xdν(G) (10)

represents �.

Proof. From Yaari (1987), there exists a continuous, non-increasing function φ : [0, 1] → R
such that F � G if ˆ

φ(F (x))dx ≥
ˆ
φ(G(x))dx. (11)

Defining ν = −φ, and integrating by parts, establishes the result.

Under Axiom 1, the sender’s preferences over lotteries are rank-based: the value he
places on the outcome depends on its rank p in the distribution. To see this, suppose ν
is differentiable. Then, for an arbitrary distribution G the sender’s utility can be written´
G−1(p)ν ′(p)dp: a weighted sum, where the marginal utility associated with the outcome

x = G−1(p) at rank p is ν ′(p)dp.
Empirical studies of decision-making under uncertainty find a consistent, “four-fold pat-

tern” (Tversky & Kahneman (1992)): people are risk-loving (averse) when it comes to gam-
bles on “longshot”, low probability gains (losses). However, their risk preferences reverse as

27For ease of exposition, we describe the dual independence here for increasing, continuous distributions,
where each distribution and quantile function have a well-defined inverse. The property itself applies to the
class of all distributions on [x, x] – see Yaari (1987).
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the gain (loss) becomes more likely.28 Tversky & Kahneman (1992) have shown that these
preferences can be represented by (10), if ν is increasing and concave-convex. Similarly, Snow-
berg & Wolfers (2010) find evidence favoring (10)—with ν increasing, concave-convex—over
expected utility as an explanation for the favorite-longshot bias.

Concave-convex weighting functions corresponds to preferences which place ‘too much
weight’ on extreme outcomes. To see this, we define the concept of extreme bias. In what
follows, we take ν to be increasing and normalize ν(0) = 0, ν(1) = 1; hence, we can consider it
a distribution function. With a small abuse of notation, we also write ν for the corresponding
measure. Let λ denote Lebesgue measure.

Definition 1. An agent with preferences represented by (10) is extreme-biased if there exists
pm ∈ [0, 1] such that ν(pm) = pm and for any Borel sets B,C such that infx∈B | x − pm |≥
supx∈C | x− pm |:

ν(B)

ν(C)
≥ λ(B)

λ(C)
, (12)

with strict inequality for some B,C.

Extreme bias refers to the way in which the agent weights outcomes in at the extreme
ranks of a distribution. Recalling that the rank is uniform on [0, 1], an agent suffers extreme
bias if ν places relatively more weight on extreme outcomes in any distribution (relative to
q) than is justified by the true (i.e., Lebesgue) distribution. For instance, when pm = 1/2

Definition 1 requires that the agent put ‘too much weight’ on outcomes far away from the
median. The following lemma shows that extreme-biased preferences are equivalent to a
concave-convex weighting function:29

Lemma 3. An agent with utility (10) is extreme biased if and only if ν is concave-convex.

Motivated by their empirical relevance, we now use our framework to study the implica-
tions of agents with extreme bias in applications to insurance and redistribution.

5.1 Competitive insurance under extreme bias

We use the following applications to illustrate how the tools of section 3 can address other
(non-informational) design problems. Moreover, they provide contexts in which the con-
straint in (2) need not be continuous, in spite of the underlying primitives.

Recall Example 3. A consumer (she) faces a risky income X ∼ F , a continuous distribu-
tion on [x, x]. Her preferences over risk are described by (10), and she suffers from extreme

28See, for example, Tversky & Kahneman (1992); Tversky & Fox (1995); Wu & Gonzalez (1996)
29Alternatively, Prelec (1998) provides a collection of choice axioms under which ν is concave-convex.
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bias. To hedge her risks, she may purchase insurance in a perfectly competitive market. Sup-
pose for now that each seller s, s = 1, . . . , can offer an insurance contract, which specifies
(i) an upfront premium ρs ≥ 0, and (ii) a contingent-consumption Ys : [x, x]→ [x, x], where
the random variable Ys(X) represents a mean preserving contraction of X. Throughout this
section, we assume Ys is measurable and that the consumer has no private information about
X.

Of course, in equilibrium firms must earn 0 profits so that ρs = 0 for all s and by the
usual logic firms must choose a profile Ys that maximizes the consumer’s utility. Hence,
equilibrium contracts follow as an immediate corollary of Theorem 1:

Corollary 6. When sellers may only offer insurance contracts, the consumer’s equilibrium
payoff is

´
xdω(F ): all sellers set ρs = 0 and

Ys(X) =

EF [X | X ≤ F−1(pc)] if X ≤ F−1(pc)

X, otherwise.

where pc is identified by Proposition 2 for ν concave-convex.

Under extreme bias, equilibrium insurance offers partial coverage. Each insurer offers to
protect the consumer from downside risks to her income. But they do not fully hedge her
risk: above a threshold, the contract does not interfere with her income. This is a common
feature of insurance contracts in private markets.30 In the standard theory, partial insurance
often arises as an inefficient response to asymmetric information. By contrast, in this setting
a realistic form of partial insurance arises as an efficient response to empirically plausible
preferences. Moreover, by Corollary 1 consumers continue to use insurance to partially hedge
their risks, irrespective of (mean) income—not a general feature under expected utility.

Of course, the consumer is not risk averse: if she were, full insurance would have been an
equilibrium. Hence, we might wonder if a seller could do better by offering something other
than an insurance contract. To that end, suppose each seller can offer a pair (ρx, Ys), where
now the only restriction on Ys is that x ≤ Ys(X) ≤ x for all X.31 Define B : [x, x]→ R by

B(x) =


x−EF [x]
x−x , x ≤ x < x,

1, x = x.

30And even outside of private markets — for example, unemployment insurance.
31For our result, we only require payments be bounded from above by some constant. In particular, a

simple application of Theorem 4 (Appendix) shows that we could allow unboundedness from below without
affecting the results. In the space of contracts with bounded payments to the consumer, assuming the
decomposition (ρx, Ys) is obviously without loss of generality.
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B is the distribution function associated with a binary lottery on {x, x} with mean EF [x].
As such, it obviously satisfies F �co B. Exactly as above, in equilibrium firms set ρs = 0

and choose Ys to maximize the consumer’s payoff, subject to earning zero profits. Hence,
equilibrium insurance contracts correspond to a mean preserving contraction of B.

As we needed no continuity assumptions to derive the bound (1), it is immediate that
the consumer’s equilibrium payoff is bounded above by

´
xdω(B). However, as B is not

continuous, Theorem 1 does not directly apply. Nonetheless, in Appendix B we show how
to deal with discontinuities. As a result, equilibrium still admits a simple characterization:

Corollary 7. An insurance equilibrium exists. The consumer’s equilibrium payoff is
´
xdω(B).

If x−EF [x]
x−x ≤ pc, then consumption is distributed according to B. Otherwise, consumption is

distributed according to

G?(x) =

x, with probability (1− pc)
EF [X]−(1−pc)x

pc
, with probability pc

Similarly to Theorem 1, Theorem 4 shows that the optimal distribution G? �co B pools
all values of B−1(p) for p ∈ [0, pc] (to take advantage of the concavity of ν) and otherwise
separates (taking advantage of convexity). When x−EF [x]

x−x ≤ pc, the optimal distribution
nonetheless corresponds to full separation of x and x. However, when x−EF [x]

x−x > pc, there
is an optimal role for insurance. Intuitively, the optimal distribution G? achieves the de-
sired pooling probabilistically: with some probability x is pooled with x for a mean income
EF [X]−(1−q?)x

q?
, and is separated otherwise. In this way, competitive insurance markets retain

the key features of Corollary 6 even when they can offer gambles to customers. Specifi-
cally, they continue to offer partial insurance of downside risks—so long as that downside
constitutes a rare loss.

5.2 Redistribution

We end with a brief description of how our results relate to income redistribution using
budget-balanced transfers. Consider an economy made up of a continuum of agents with
income distribution F . As we mentioned in Example 4, the (generalized) Gini coefficient
is a natural measure of inequality. As Newbery (1970) shows, there is no Bernoulli utility
whose expected value ranks distributions in the same order as their Gini coefficient. On the
other hand, the Gini coefficient orders inequality (for any fixed mean) in the same way as
(10) for ν(p) = −p2 (Dorfman (1979)). Similarly, the generalized Gini coefficient (3) can be
expressed in terms of (10). Integrating by parts, the generalized Gini represents the same
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preferences ordering as: ´
xdν(G)

µ
,

where µ = EF [x] is (fixed) mean income and ν ′(p) = −
´ p
0
γ(q)dq. Hence, we can interpret

−γ(p) as a rate of change in the welfare weights the policymaker assigns to agents at each
rank of the distribution:32 an increasing γ hence corresponds to inequality aversion (concave
ν), while single-peaked γ implies a concave-convex weighting function. Note, there is no
need for γ to be positive. Indeed, so long as γ is bounded, then we can consider ν ′ ≥ 0

without loss— addition of a linear function to ν leaves the solution to (2) unchanged.
If a government is only willing to consider inequality-reducing transfers, then Theorem 1

applies. If it is willing to engage in any budget-balanced transfers, then (as in section 5.1)
Theorem 4 applies, with F = B. While the specifics of optimal redistribution depend on the
form of γ, our previous results suggest that income support for those in the left tail can be an
important feature of policy—even if governments are willing to consider inequality increasing
transfers. Moreover, as corollary 1 highlights, the policymaker’s demand for redistribution
in (2) is invariant to affine transformations of the income distribution. This seems natural
where arguments for redistribution are often based on relative rather than absolute grounds.

6 Persuasion with heterogeneous priors

In this section, we revisit the model of Onuchic & Ray (2020) and show how their results
can be extended using the results of section 3.

We briefly recap the key elements of their model: there is a state of the world X, drawn
from support [x, x]. A sender and receiver have different prior beliefs about the state. Let
FS denote the sender’s prior and FR the receiver’s. Before the receiver is due to take an
action a ∈ R, the sender can provide her with information about X. Given any information
observed, the receiver updates her beliefs and chooses an action equal to her posterior ex-
pectation of the state. The sender wishes to maximize the receiver’s expected action, taken
with respect to the sender’s beliefs.

Onuchic & Ray (2020) show that, if attention is restricted to monotone partitional signals
then the optimal such signal can be identified from the geometry of the function FS◦F−1R . We
now argue that Theorem 1 also identifies the sender’s optimal information structure, under
the weaker assumption that the sender’s signal be monotone. Without loss of generality,
let us label signals by their induced ‘receiver posterior’ mean. That is, letting Ei denote
expectations with respect to prior Fi, i ∈ {S,R}, we define our signals y so that they satisfy

32Recall the discussion following Theorem 1.
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y = ER[X | y]. An experiment is a Markov kernel K, a conditional distribution of Y given
X obeying Y = ER[X | Y ]. Together, Fi and K induce subjective probability distributions
Pri, i = S,R, over (X, Y ). Let Gi be the induced marginal distribution over Y , for i = S,R.
Of course, since Y = ER[Y | X], from the receiver’s perspective Y is a mean preserving
contraction of X: GR � FR.

We define a signal to be monotone if it induces a conditional distribution over the re-
ceiver’s action that is nondecreasing with the state. That is, a signal is monotone if

ϕ(x) :=

ˆ
ydK(y | x)

is increasing in x.33 Given ϕ is increasing, we can write the distribution over ϕ as Hi(z) :=

Pri[ϕ(X) ≤ z] = Fi(ϕ
−1(z)), i = S,R. This implies HS(z) = FS(ϕ−1(z)) = FS ◦F−1R (HR(z)).

Moreover, since ϕ is a conditional expectation of Y , HR �co GR and therefore HR � FR.
The sender’s objective is to maximize

ES[Y ] =
´ ´

ydK(y | x)dFS(x) =
´
ϕ(x)dFS(x) =

´
ϕHS(ϕ) .

Hence, since HR �co FR is a necessary condition for any monotone experiment, the problem

max
HR�FR

´
ϕdFS ◦ F−1R (HR(ϕ))

provides an upper bound on the value of any monotone experiment. But this is a problem
of the form (2), with ν = FS ◦ F−1R . From Theorem 1, the solution to this problem H?

R

corresponds to a monotone partition, where the pooling regions are determined by the con-
vexification of FS ◦F−1R . Since a monotone partition is monotone, it is a feasible. Moreover,
since it is deterministic, the implied distribution over Y is simply G?

R = H?
R. The above

argument shows:

Proposition 6. Any monotonic disclosure policy is dominated by a monotone partitional
policy. The optimal monotone partition is identified by Theorem1 applied to ν = FS ◦ F−1R .

33Notice that monotonicity is strictly weaker than monotone partitionality. In particular, while a monotone
partitional signal is always implementable with a deterministic map from the state to signals, monotone
signals may be stochastic. One immediate implication of this is that while the conditional distributions
K(· | x), K(· | x′) for x < x′ are necessarily ordered by FOSD for monotone partitional signals, this is not
required of a monotone signal.
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7 Conclusions

We study a class of information design problems in which the sender has rank-dependent
preferences over the receiver’s posterior mean. We show that optimal persuasion can al-
ways be characterized by a convexification approach, which identifies a simple form of
communication—monotone partitions—as optimal. Simply, the sender either reveals the
state, or pools states within an interval into a single message. As the sender becomes more
risk-loving, communication becomes more informative, as characterized by a shrinking of
the intervals on which the state is pooled. Moreover, we find that “grading on a curve” is
optimal, in the sense that optimal pooling intervals scale directly with the underlying state.

Our problem applies to several natural economic interactions. For instance, it applies to
a broad class of information design problems involving multiple states and i.i.d. constraints,
which incorporate the design of advertising standards in oligopoly markets and media in-
fluence in elections. It also applies to the study of insurance markets when customers’ risk
preferences fall into an empirically-relevant behavioral class, and income redistribution when
a policymaker has a concern for inequality measured by the (weighted) area under the Lorenz
curve. Finally, it provides a new implication for Bayesian persuasion with heterogeneous pri-
ors.
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Appendix A: Proofs

Lemma 4. For any fixed G with support on [x, x],

xˆ

x

xdν(G(x)) ≤
xˆ

x

xdω(G(x)). (13)

Proof. Let η := ν − ω. As ν(p) ≥ ω(p) for all p ∈ [0, 1], η is positive. Moreover, it is well-
known (see, for instance, Baron & Myerson (1982)) that ν(0) = ω(0) and ν(1) = ω(1) and
hence η(0) = η(1) = 0. As ν and ω have bounded variation, so does η. Hence, η = η1−η2 ≥ 0,
where η1, η2 are non-decreasing functions with η1(0) = η2(0) and η1(1) = η2(1).

For any feasible distribution G, notice that η1 ≤ η2 and η1(0) = η2(0), η1(1) = η2(1)

implies ˆ
xd(η1 ◦G)(x) ≤

ˆ
xd(η2 ◦G)(x).

Hence, by linearity of the integral
´
xd(η ◦G)(x) ≤ 0 and by linearity again

ˆ
xd(ν ◦G)(x) ≤

ˆ
xd(ω ◦G)(x).
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Proof of Proposition 1

Let vexρ ◦ ν be the convexification of ρ ◦ ν, and let I?i (ρ ◦ ν), i ∈ Iρ◦ν , denote the associated
disjoint intervals over which ω < ν. Since ω is convex, so too is ρ ◦ ω. Moreover as ρ is
increasing, ρ ◦ ω(p) ≤ ρ ◦ ν(p) for all p ∈ [0, 1]. Hence, by definition ρ ◦ ω(p) ≤ vexρ ◦ ν(p)

for all p ∈ [0, 1]. In other words, {p : vexρ ◦ ν(p) = ρ ◦ ν(p)} ⊇ {p : ρ ◦ ω(p) = ρ ◦ ν(p)} =

{p : ω(p) = ν(p)}. Each I?i (ρ ◦ ν), i ∈ Iρ◦ν , must therefore be a subset of some I?j (ν), j ∈ Iν .
Fix a continuous distribution function F . By Theorem 1, the optimal information structures
corresponding to the respective weighting functions satisfy G?(ρ ◦ ν) �co G?(ν). �

Proof of Proposition 2

Consider the problem

max
p∈[0,1]

`′(p) :=
ν(1)− ν(p)

1− p
. (14)

As ν is concave on [p, 1], a simple application of Jensen’s inequality shows that any solution
to (14) lies in the compact subset [0, p]. Moreover, as ν is convex on [0, p] the objective is
continuous. Hence, a solution pc exists.

Define the line `(p) = ν(pc) + `′(pc)(p − q), and note that ν(1) = `(1). Moreover,
ν(p) ≥ `(p) for all p ∈ [0, 1]. Indeed, if not, then for some p′ ∈ [0, 1] we would have
ν(1)−ν(p′)

1−p′ > `(1)−`(p′)
1−p′ = `′(pc)—a contradiction to the optimality of pc.

Now, define the function ν̂(p) = ν(p) for 0 ≤ p ≤ pc, and ν̂(p) = `(p) for pc < p ≤ 1. As
ν is concave on [0, p], and ` is linear, ν̂ is concave if and only if limp↑pc

ν(pc)−ν(p)
pc−p ≥ `′(pc): the

latter follows immediately from `(p) ≤ ν(p) for all p ≤ q and `(q) = ν(q).
Hence, ν̂ is a convex function satisfying ν̂(p) ≤ ν(p), for all p. We argue it is the maximal

such function. Clearly this is the case for any p ≤ pc. Consider some p′ > pc and any convex h
which satisfies h(p′) > ν̂(p′). We show that h cannot be pointwise dominated by ν. Suppose
h(pc) ≤ ν(pc) (otherwise, we are done). Then we would have ν̂(pc) = h(pc) = ν(pc). But
then

h(1) ≥ h(pc) + (1− pc)h(p′)− h(pc)

p′ − pc
> `(pc) + `′(pc)(1− pc)

= ν(1).

A contradiction. Therefore, ν̂ = ω, the convexification of ν.
Finally, the first order condition for differentiable ν follows since ` is by definition a

tangent line of ν at pc. As ν is convex on [0, p] ` is a support line of ν on [0, p] and hence has
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a unique tangency point. By comparison with `, it is easy to see that no other line passing
through (1, ν(1)) can be a support of the convex function at pc. Hence, there can be no
alternative solution to ν ′(p) = ν(1)−ν(p)

1−p . �

Proof of Theorem 2

We prove the result assuming ν is increasing; the extension to BV ν follows immediately,
noting it can be expressed as the difference of increasing functions. Throughout, fix some
continuous F . We first establish the existence of a sequence β̃n which converges uniformly
to ν:

Lemma 5. Fix a continuous function ν : [0, 1] → R, and normalize ν(0) = 0. Let αnk =

ν(1− k
n
)− ν(1− k+1

n
), and β̃n =

∑
αnkβn−k+1,k. Then β̃n → ν uniformly on [0, 1].

Proof. As is well-known, the beta distribution satisfies the following

βn−k+1,k(p) =
n∑

r=n−k

(
n

r

)
pr(1− p)n−r = bn−k,n(p) + βn−k,k+1(p),

where β0,n+1 := 0, and each bn−k,n(p) =

(
n

n− k

)
pn−k(1− p)k, k = 0, . . . , n is a Bernstein

basis polynomial. Using the recursive formulation, β̃n can be expressed β̃n =
∑n

k=0 ν(1 −
k
n
)bn−k,n. By Theorem 6.2 Billingsley (1995), β̃n → ν uniformly.

Let G?
n ∈ arg maxG�coF

´
xdβ̃n(G) be the solution identified by Theorem 1 correspond-

ing to weighting function β̃n, and let u? = lim sup
´
xdβ̃n(G?

n). Trivially, there exists a
subsequence {G?

nk
} for which

´
xdβ̃nk

(G?
nk

) → u?. As [x, x] is bounded, Helly’s theorem
implies there exists a further subsequence {G?

j} and a distribution function G∞ such that
G?
j ⇒ G∞, where ⇒ denotes weak convergence.34 Moreover, G∞ �co F since, by G?

j �co F
and the Bounded Convergence Theorem

xˆ

s

(
1−G∞(x)

)
dx = lim

j→∞

xˆ

s

(
1−G?

j(x)
)
dx ≤

xˆ

s

(
1− F (x)

)
dx

for each s ∈ [x, x].

Lemma 6. Along subsequence {G?
j}, limj→∞

´
xdβ̃j(G

?
j) =

´
xdν(G∞).

34To ease notation, we write G?
j in place of G?

nkj
along the latter subsequence.
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Proof. For each n, k, βn−k+1,k(p) corresponds to the complementary c.d.f. of a binomial
distribution, and hence is trivially increasing in p. As ν is increasing, this implies each β̃n
is also increasing. Hence, β̃n ◦ G?

n represents a measure. We argue that β̃n ◦ G?
n ⇒ ν ◦ G∞,

from which the lemma follows immediately.
We must show that, for any continuity point x of ν ◦G∞, β̃n ◦G?

n(x)→ ν ◦G∞(x). There
are two ways such a point can arise: (i) x is a continuity point of G∞, or (ii) G∞(x−) :=

limy↑xG∞(y) < G∞(x) with ν constant on [G∞(x−), G∞(x)]. The former case is simpler,
and so we prove the latter. To do this, bound | β̃n ◦G?

n(x)− ν ◦G∞(x) | as follows:

| β̃n ◦G?
n(x)− ν ◦G∞(x) | ≤ | β̃n ◦G?

n(x)− β̃n ◦G∞(x) | + | β̃n ◦G∞(x)− ν ◦G∞(x) |

≤ | ν ◦G?
n(x)− ν ◦G∞(x) | + | β̃n ◦G?

n(x)− ν ◦G?
n(x) |

+2 | β̃n ◦G∞(x)− ν ◦G∞(x) | .

Fix some ε > 0. By Lemma 5, there exists an m such that for n ≥ m, the final two terms
are bounded above by 3

4
ε. Hence, we will be done if we can find m′ such that | ν ◦G?

n(x)−
ν ◦ G∞(x) |≤ ε

4
for all n ≥ m′. Since G?

n is increasing and the set of continuity points of
G∞ is dense, it is easy to see that limy↑xG

?(y) ≤ lim inf G?
n(x) ≤ lim supG?

n(x) ≤ G?(x).
By the continuity of ν at p ∈ {G∞(x−), G∞(x)} and its constancy on [G∞(x−), G∞(x)],
ν(G?

n(x))− ν(G∞(x))→ 0, guaranteeing existence of the required m′.

We can now prove
´
xdβ̃n(G?

n) →
´
xdν(G?), where G? is characterized by Theorem 1.

Since G? �co F , we have
´
xdβ̃n(G?

n) ≥
´
xdβ̃n(G?) for each n. Moreover, for fixed G? it is

easy to see that uniform convergence β̃n → ν implies weak convergence β̃n ◦ G? ⇒ ν ◦ G?,
so that

´
xdβ̃n(G?) →

´
xdν(G?). Hence, lim inf

´
xdβ̃n(G?

n) ≥
´
xdν(G?). Moreover, since

each G∞ �co F , we have lim sup
´
xdβ̃n(G?

n) =
´
xdν(G∞) ≤

´
xdν(G?)—which proves the

claim.
Finally, we argue that if G? is unique then Gn ⇒ G?. For sake of a contradiction,

suppose G? is the unique solution to (2), but Gn ; G?. Applying Helly’s theorem again,
there must some distribution function G′ 6= G? and a subsequence Gl ⇒ G′. But, this implies
lim
´
xdβ̃(Gl) =

´
xdν(G′) <

´
xdν(G?)—a contradiction to lim

´
xdβ̃(Gn) =

´
xdν(G?). �

Proof of Lemma 1

Let ps : [x, x] → R be the pricing strategy of seller s, a measurable function of xs. Let
vs := xs − ps be the consumer surplus delivered by s, and define the best rival offer vm−s =

maxt∈{1,...,N}\{s} vt. vm−s has some distribution function induced by H−s = {Ht}t6=s; call it

34



Qm
−s. Then–given private observation of xs—s’s optimal pricing problem is

max
ps∈R

psQ
m
−s(xs − ps) = max

vs∈R
(xs − vs)Qm

−s(vs). (15)

Anticipating this, at the advertising stage seller s solves

max
G�coF

ˆ
ψ(xs)dG(xs),

where ψ(xs) := maxvs∈R(xs−vs)Qm
−s(vs) is the upper envelope of a family of functions which

are all affine in xs, and hence convex. Hence, G = F is a solution to (15) for all s; maximal
disclosure is an equilibrium. �

Proof of Proposition 3

E is trivially bounded by the triangle {CS + Π ≤ EF [x}, CS,Π ≥ 0}. Suppose E is not
closed. Then there exists a sequence (vn, πn) and some (v′, π′) such that (vn, πn) ∈ E , ∀n,
(vn, πn) → (v′, π′) and (v′, π′) /∈ E . By the separating hyperplane theorem, there exist
constants αB, αS such that αBv′ + αSπ

′ > αBv + αSπ for all (v, π)∈ E . By continuity,
αBvn + αSπn → αBv

′ + αSπ
′. Hence, αBv′ + αSπ

′ is a supremum for αBv + αSπ, which is
unattainable on E . Hence, (8) has no solution—a contradiction to Theorem 1.

To show E is convex, suppose (v1, π1), (v2, π2) ∈ E . Then there exist G1, G2 �co F such
that vi =

´
xdβ(N−1,2)(Gi), πi =

´
xd∆βN(Gi), i = 1, 2, where ∆βN = β(N,1) − β(N−1,2).

Consider the distribution Gα = αG1(1−α)G2, defined by (9). By a change of variables, it is
easy to see that vα =

´
xdβ(N−1,2)(Gα) = αv1 +(1−α)v2 and similarly πα = απ1 +(1−α)π2.

Convexity of E will therefore follow if we show Gα �co F . We appeal to conjugate duality:
integrating by parts and changing variables shows

´ 1
q
G−1(p)dp = maxs{s(1 − q) +

´ x
s

(1 −
G(x))dx} for any distribution G and q ∈ (0, 1). But as Gi �co F ,

´ x
s

(1 − Gi(x))dx ≥´ x
s

(1 − F (x))dx, ∀s ∈ [x, x]. Hence,
´ 1
q
G−1i (p)dp ≥

´ 1
q
F−1(p)dp, i = 1, 2, and by linearity´ 1

q
G−1α (p)dp = α

´ 1
q
G−11 (p)dp + (1 − α)

´ 1
q
G−12 (p)dp ≥

´ 1
q
F−1(p)dp, ∀q ∈ [0, 1]. Applying

similar logic in the other direction gives
´ x
s

(1 − Gα(x))dx ≥
´ x
s

(1 − F (x))dx, ∀s ∈ [x, x].
Hence, Gα �co F .

The extreme points of E solve (8). We prove these points are characterized by extreme
censorship, by showing that for any αB, αS, β̃N = αBβ(N−1,2) + αS∆βN is either convex-
concave or concave-convex. We show the result assuming αB > 0 (the extension to αB ≤ 0 is
trivial). By linearity it is without loss to replace β̃N by νr = β(N−1,2) + r∆βN in the sender’s
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objective. Taking derivatives twice yields, after some algebra:

ν ′r(p) = NpN−2
(
(1− r)(N − 1)(1− p) + rp

)
ν ′′r (p) = N(N − 1)pN−3

(
(1− r)(N − 2) + (1 +N(r − 1))p

)
.

Inspection of ν ′′r shows that vr is (i) convex for r ∈ [1
2
, 1], (ii) convex-concave for r < 1

2
, and

(iii) concave-convex for r > 1. Hence, optimal information structures in each case correspond
to full information, right-censorship and left-censorship, respectively. Comparative statics
in r for r < 1

2
(r > 1) follow from the implicit function theorem applied to (5) and to its

counterpart for concave-convex functions. �

Proof of Corollary 3

CS maximization corresponds to problem (8) with β̃N = β(N−1,2), where β(N−1,2)(p) = N(N−
1)
´ p
0
qN−2(1−q)dq. The proof of Proposition 3 (for αB = 1, αS = 0) shows right censorship is

optimal. By Proposition 2, the optimal rank threshold p = pc(N) satisfies, on rearrangement:

pN−2(1− p) =

´ 1
p
qN−2(1− q)dq

1− p
.

We show pc(N) is increasing in N . If N increases by 1, the left hand side multiplies by
p < 1, while the right side becomes

´ 1
p
q(N+1)−2(1− q)dq

1− p
>

´ 1
p
pqN−2(1− q)dq

1− p
= p

´ 1
p
qN−2(1− q)dq

1− p
,

where the inequality follows because the range of integration is over p ≤ q ≤ 1. Hence, for
m = N + 1, p = pc(N) satisfies the inequality

pm−2(1− p) <
´ 1
p
qm−2(1− q)dq

1− p
. (16)

We establish that equality is restored for some pc(N + 2) ∈ (pc(N), 1). Notice that, at
p′ = m−1

m−2 , the inequality (16) reverses – this follows from the observation that p′ maximizes
the value of the integrand. By continuity, there exists pc(m) ∈ (pc(N), m−1

m−2) for which (16)
becomes an equality. By Proposition 2, this pc(m) is the unique optimal rank threshold.
Hence, information obviously increases in the sense of Blackwell.
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As pc(N) is increasing, it has a limit pc(∞). Rearranging the first order condition gives

1− pc(N) =

1ˆ

pc(N)

(
q

pc(N)

)n−2(
1− q

1− pc(N)

)
dq.

By an almost identical argument to that in the proof of Proposition 5, pc(∞) = 1. �

Proof of Corollary 4

Consumer surplus maximization corresponds to problem 8 with β̃N = β(N−1,2). From the
proof of Proposition 3 (αB = 0, αS = 1), left censorship is optimal. In this case, the first
order condition for the optimal rank threshold reduces to

∆β′N(pc) =
∆βN(pc)

pc
,

where ∆βN = βN,1 − βN−1,2. Directly solving the first order condition, we find pc = N−2
N−1 ;

hence, the rest of the corollary follows. �

Proof of Proposition 4

We prove the result for a right-biased lobbyist. Similar arguments apply for left-bias, ap-
plying instead the weighting function −ν. Given any signal realization Xi = E[xi | Xi], a
voter’s expected utility from policy a is

E[ui | Xi] = −a2 + 2aXi −X2
i ,

which is quadratic, and hence single-peaked, in a. Given an odd number of voters, there is
a unique equilibrium of the continuation game between politicians in which both politicians
set a1 = a2 = X(N+1), the median voter’s ideal policy. Hence, a right-biased lobbyist wishes
to maximize

E[X(N+1)] =

ˆ
xd(β(N,N) ◦G)(x)

subject to G �co F , where β(N,N) : [0, 1]→ R+ satisfies β(N,N)(p) = (2N+1)!
N !N !

´ p
0
qN(1− q)Ndq.

Taking derivatives shows β′(N,N)(p) = (2N+1)!
N !N !

pN(1−p)N and β′′(N,N)(p) = Nβ′(N,N)(p)
(

1−2p
p(1−p)

)
.

β(N,N) is everywhere increasing, convex for 0 ≤ p ≤ 1
2
and concave for 1

2
< p ≤ 1. Moreover,

β′(N,N)(0) = 0. By Proposition 2 and Theorem 1, informative right-censorship is optimal
with censorship above rank pc ∈ (0, 1

2
) of F . �
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Proof of Proposition 5

We prove the result for a right-biased lobbyist. Let pc(N) be the optimal rank threshold
as a function of N . As β(N,N) is differentiable and pc(N) interior, Proposition 2 implies
pn(1−p)n =

´ 1
p
qn(1−q)n

1−p dq holds at p = pc(N). Now consider m > N . We have pm(1−p)m =(´ 1
p
qn(1−q)n

1−p dq
)m

n
<
´ 1

p
qm(1−q)m

1−p dq, where the inequality is Jensen’s, applied to the strictly

convex function f(x) = x
m
N . By contrast, at p̃ = 1

2
, we have p̃m(1 − p̃)m >

´ 1
p̃
qm(1−q)m

1−p̃ dq—
which follows from the observation that q(1 − q) is maximized at q = p̃. Each side of the
inequality is continuous, and hence there is a pc(m) ∈ (pc(N), 1

2
) at which they intersect; by

Proposition 2 this is unique. Hence, pc(N) is increasing in N ; which trivially corresponds to
a Blackwell increase in information.

Finally, as pc(N) is increasing and bounded by 1
2
, it has a limit pc(∞) ≤ 1

2
. Rewriting

the first order condition for pc(N):

1− pc(N) =

1ˆ

pc(N)

(
q(1− q)

pc(N)(1− pc(N))

)N
dq.

Suppose pc(∞) < 1
2
. Then there exists an interval [p′, 1

2
], such that pc(∞) ≤ p′ < 1

2
. For

every N , the right hand side above is therefore at least
´ 1

2

p′

(
q(1−q)

pc(N)(1−pc(N))

)N
dq. But since

q(1−q) is single peaked at 1
2
, the integrand increases without bound on [p′, 1

2
] as N →∞. As

the left-hand side of this expression is bounded, the first order condition cannot be satisfied
for N sufficiently large – a contradiction. Hence, pc(∞) = 1

2
. �

Proof of Lemma 3

(If) Divide [0, 1] into X = [0, pm] and Xc = [pm, 1]. Since ν is concave on X, then property
(12) holds by definition on X for any intervals B = [p, p′], C = [q, q′] such that p′ ≤ q ≤ pm.
Moreover, the expression holds with strict inequality for some B,C if ν is not linear. The
interval subsets form a π-system generating the Borel σ-algebra on X. If we can show the
class of sets satisfying (12) form a λ-system (closed under complements and disjoint unions)
then Dynkin’s theorem implies it extends to the Borel σ-algebra on X.

To see that (12) is closed under disjoint unions, suppose it holds for pair (Bi, Cj) from
B1, B2,... and C1, C2, . . . , where all sets are disjoint and supBi ≤ inf Cj for all i, j. Rewriting
(12)

ν(Bi)λ(Cj) ≥ ν(Cj)λ(Bi),

holds for all i, j. Summing the inequality, first over i and then j, and applying disjointness
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shows that
ν(∪iB)λ(∪jC) ≥ ν(∪jC)λ(∪iB).

Since ν(pm) = pm, similar steps easily establish that (12) is closed under relative com-
plements on X. Hence, the class of sets satisfying (12) is a λ-system. An almost identical
argument establishes the result on Xc = [p, 1] for ν convex.

(Only if) This case is trivial, and hence omitted. �

Appendix B: Optimal information design with discontinu-

ities

In Theorem 1, we assumed that the distribution of X, F , was continuous. However our
methods extend naturally to settings in which F admits discontinuities, such as when the
state space has a finite support or when atoms are present. Indeed, we note that bound (4)
did not rely on the assumption that F was continuous. Hence, to extend Theorem 1 we need
only identify a feasible distribution G′ which still attains the bound in this case. Intuitively,
G′ will deal with potential atoms at the endpoints of a pooling interval by allowing for
mixed revelation of these endpoints. Of course, G′ will no longer be partitional in such
cases, but—as we argue below—is nonetheless still monotone.

Let F (x−) = limy↑x F (y) and define D := {x : F (x−) < F (x)}, the set of disconti-
nuity points of F . As is well-known, D is countable. Additionally, we write F ({x}) :=

[F (x−), F (x)] for the interquantile range spanned by the event {X = x} and ∆F (x) =

F (x) − F (x−). Let xk (x′k) be the (unique) value in [x, x] for which pk ∈ F ({x}) (p′k ∈
F ({x′k})), define J?k = (xk, x

′
k) and let J?k = [pk, p

′
k] be the closure of J?k .35

Writing λ for the Lebesgue measure on [0, 1], let

rk(x) =


λ(F ({x})∩I?k )
λ(F ({x})) , if x ∈ D,

1 , if x /∈ D, F (x) ∈ I?k ,

0 , otherwise.

be the proportion of F ({x}) which intersects I?k . Notice that (i) rk(x) can be interior to [0, 1]

only at x ∈ {xk, x′k}, and (ii) by monotonicity of F , rk(x) = 0 for x /∈ [xk, x
′
k] and rk(x) = 1

for x ∈ (xk, x
′
k).

35Note how this extends the definitions of xk, x′k in section 1.
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µ̃k =
rk(xk)∆F (xk)xk + rk(x

′
k)∆F (x′k)x

′
k +
´
J?
k
xdF

λ(I?k)
.

Note that rk(xk)∆F (xk) + rk(x
′
k)∆F (x′k)x

′
k +
´
J?
k
dF = λ(I?k), by definition of rk.

Suppose that with probability rk(x) the sender sends a signal s = µ̃k. Then, µ̃k clearly
represents the conditional mean of X given s is observed. Building on this, we construct an
information structure π′ as follows. For x /∈ D:

π′(X) =

µ′k, with probability rk(X), k∈ K,

X, with probability 1-
∑

k∈K rk(X).

Fixing some X = x, the support of π′(x) contains at most three signals. This follows from
the definition of rk and the fact that x can equal xk (x′j) for at most one k ∈ K (respectively,
j ∈ K). Moreover, notice that by the monotonicity of F and the definition of rk, π′ is
monotone in the following sense: if x > y, then min supp π′(x) ≥ max supp π′(y). This is a
strong form of monotonicity—for example, it obviously implies π′(x) first-order stochastically
dominates π′(y).

Of course, π′ induces a distribution G′ over posterior means. Hence, G′ �co F holds
trivially. It is easy to verify that, by construction, G′ satisfies

G′(x) =


F (x), x /∈

⋃
k∈K J

?

k, or x = xk, k ∈ K, and x 6= x′j,∀j ∈ K

pk, xk ≤ x < µ̃k,

p′k, µ̃k ≤ x < x′k,

Notice that the specification of G′ is rich enough to accommodate cases where two ad-
jacent intervals J?k and J?j satisfy xk = x̃j. In this case, G′(x) = pk at x = xk. Otherwise,
if xk 6= x′j for all j ∈ K (i.e., J?k is not adjacent to another such interval on its left), then
G′(xk) = F (xk). With these preliminaries, we can now extend Theorem 1.

Theorem 4. G′ solves (2).

Proof. Exactly as before, the same upper bound (4) applies. Hence, we need only argue that
G′ satisfies (expressing both sides in terms of p):36

ˆ
G′−1(p)dν(p) =

ˆ
F−1(p)dω(p).

36Working in the rank space is slightly easier, allowing us to split the range of integration up into intervals—
avoiding the need to describe an equivalent procedure for a mixed splitting in [x, x].
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With µ̃i in place of µi, almost identical arguments to the proof of Theorem 1 go through. In
particular, ˆ

(
⋃

k J
?
k )

c

G′−1(p)dν(p) =

ˆ

(
⋃

k J
?
k )

c

F−1(p)dω(p)

again holds trivially (since G−1 = F−1 and ω = ν on (
⋃
k J

?
k )c. Moreover, on any J?k

essentially the same steps show that
ˆ

J?
k

G′−1(p)dν(p) = µ̃i(ν(p′i)− ν(pi)) = µ̃i(ω(p′i)− ω(pi)) =

ˆ

J?
k

F−1(p)dω(p).
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